【題目】如圖,把△ABC向右平移3個單位長度,再向上平移2個單位長度,得到△ABC′,點A(-1,2),B(-3,1),C(0,-1)的對應(yīng)點分別是A′,B′,C′.

(1)在圖中畫出△ABC′;

(2)分別寫出點A′,B′,C′的坐標(biāo);

(3)求△ABC′的面積.

【答案】(1)圖形見解析;(2)A′(2,4),B′(0,3),C′(3,1).(3)SABC

【解析】

1)把△ABC的各頂點分別向右平移3個單位長度,再向上平移2個單位長度,得到的平移后的各點,順次連接各頂點即可得到△ABC′;

2)根據(jù)各點距離坐標(biāo)軸的距離和各象限內(nèi)點的符號可寫出點A′,B′,C′的坐標(biāo);

3)△ABC′的面積等于邊長為3的正方形的面積減去直角邊長為1,2的直角三角形的面積,直角邊長為23的直角三角形的面積,直角邊長為13的直角三角形的面積.

1)如圖;

2A′(24),B′(0,3),C′(3,1);

3平方單位,即△ABC′的面積為平方單位.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB72°30′,射線OC在∠AOB內(nèi),∠BOC30°,

1)∠AOC_______;

2)在圖中畫出∠AOC的一個余角,要求這個余角以O為頂點,以∠AOC的一邊為邊.圖中你所畫出的∠AOC的余角是______,這個余角的度數(shù)等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,E是BC上一點,AF⊥DE于點F.

(1)求證:DFCD=AFCE.
(2)若AF=4DF,CD=12,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線AC,BD相交于點O,且AC=12cm,BD=16cm.點P從點A出發(fā),沿AB方向勻速運(yùn)動,速度為1cm/s;過點P作直線PF∥AD,PF交CD于點F,過點F作EF⊥BD,且與AD、BD分別交于點E、Q;連接PE,設(shè)點P的運(yùn)動時間為t(s)(0<t<10).
解答下列問題:
(1)填空:AB= cm;
(2)當(dāng)t為何值時,PE∥BD;
(3)設(shè)四邊形APFE的面積為y(cm2
①求y與t之間的函數(shù)關(guān)系式;
②若用S表示圖形的面積,則是否存在某一時刻t,使得S四邊形APFE= S菱形ABCD?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的線段AB及點P,給出如下定義:

若點P滿足PA=PB,則稱P為線段AB的“軸點”,其中,當(dāng)0°<∠APB<60°時,稱P為線段AB的“遠(yuǎn)軸點”;當(dāng)60°≤∠APB≤180°時,稱P為線段AB的“近軸點”.

(1)如圖1,點AB的坐標(biāo)分別為(-2,0),(2,0),則在, 中,線段AB的“近軸點”是 .

(2)如圖2,點A的坐標(biāo)為(3,0),點By軸正半軸上,且∠OAB=30°.

①若P為線段AB的“遠(yuǎn)軸點”,直接寫出點P的橫坐標(biāo)t的取值范圍 ;

②點Cy軸上的動點(不與點B重合且BCAB),若Q為線段AB的“軸點”,當(dāng)線段QBQC的和最小時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將圓心角都是90°的扇形OAB和扇形OCD疊放在一起,連接AC、BD.

(1)將△AOC經(jīng)過怎樣的圖形變換可以得到△BOD?
(2)若 的長為πcm,OD=3cm,求圖中陰影部分的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計算并觀察下列各式:

1個:(ab)(a+b)______;

2個:(ab)(a2+ab+b2)______;

3個:(ab)(a3+a2b+ab2+b3)_______

……

這些等式反映出多項式乘法的某種運(yùn)算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________;

(3)利用(2)的猜想計算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應(yīng)用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》主要講述了以測量問題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問題:今有池方一丈,葭生其中央,出水一尺引葭赴岸,適與岸齊.問水深、葭長各幾何?”

譯文:“今有正方形水池邊長為1丈,有棵蘆葦生長在它長出水面的部分為1將蘆葦?shù)闹醒耄虺匕稜恳『门c水岸齊接問水深,蘆葦?shù)拈L度分別是多少尺?”(備注:1=10)

如果設(shè)水深為,那么蘆葦長用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點A對應(yīng)的數(shù)為a,點B對應(yīng)的數(shù)為b,且多項式﹣x2yxy22xy+5的次數(shù)為a,常數(shù)項為b

1)直接寫出a、b的值;

2)數(shù)軸上點A、B之間有一動點P(不與AB重合),若點P對應(yīng)的數(shù)為x,試化簡:|2x+6|+4|x5||6x|+|3x9|

查看答案和解析>>

同步練習(xí)冊答案