一個(gè)三角形的底為3xcm,高為5cm,一個(gè)梯形的上底是2xcm,下底為上底的3倍,高為6cm,兩者誰(shuí)的面積大?大多少?
分析:根據(jù)題意求出三角形與梯形的面積,比較大小即可.
解答:解:三角形:7.5x(cm2),梯形:24x(cm2),
則梯形面積大,大16.5x(cm2).
點(diǎn)評(píng):此題考查了整式加減的應(yīng)用,弄清題意是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=
3
x+2
3
與x軸交于點(diǎn)A、與y軸交于點(diǎn)D,以AD為腰,以x軸為底作精英家教網(wǎng)等腰梯形ABCD(AB>CD),且等腰梯形的面積是8
3
,二次函數(shù)y=ax2+bx+c經(jīng)過(guò)等腰梯形的四個(gè)頂點(diǎn).
(1)求點(diǎn)A,B,C的坐標(biāo)
(2)求拋物線的解析式;
(3)若點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADP為等腰三角形,求這時(shí)點(diǎn)P的坐標(biāo);
(4)若點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P使△ADP為等腰三角形?若不存在,請(qǐng)說(shuō)明理由;若存在,簡(jiǎn)要地進(jìn)行說(shuō)明有幾個(gè),并至少求出其中的一個(gè)點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

[定理表述]
請(qǐng)你根據(jù)圖1中的直角三角形敘述勾股定理(分別用文字語(yǔ)言及符號(hào)語(yǔ)言敘述);
[嘗試證明]
它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明.現(xiàn)以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以a+b為高的直角梯形(如圖2),請(qǐng)你利用圖2,驗(yàn)證勾股定理;
[知識(shí)拓展]
如圖3所示,要在燃?xì)夤艿纋上修建一個(gè)泵站,分別向A、B兩鎮(zhèn)供氣,已知A、B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設(shè)計(jì)兩種方案:
方案一:如圖4所示,AP⊥l于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a1=AB+AP.
方案二:如圖5所示,點(diǎn)A′與點(diǎn)A關(guān)于l對(duì)稱,A′B與l相交于點(diǎn)P,泵站修建在點(diǎn)P處,該方案中管道長(zhǎng)度a2=AP+BP.①在方案一中,a1=
x+3
x+3
km(用含x的式子表示)
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示)
③請(qǐng)你分析:要使鋪設(shè)的輸氣管道較短,應(yīng)選擇方案一還是方案二.

查看答案和解析>>

同步練習(xí)冊(cè)答案