如圖,直線l1:y=2x與直線l2:y=kx+3在同一平面直角坐標(biāo)系內(nèi)交于點(diǎn)P.
(1)寫出不等式2x>kx+3的解集:______;
(2)設(shè)直線l2與x軸交于點(diǎn)A,求△OAP的面積.

【答案】分析:(1)求不等式2x>kx+3的解集就是求當(dāng)自變量x取什么值時(shí),y=2x的函數(shù)值大;
(2)求△OAP的面積,只要求出OA邊上的高就可以,即求兩個(gè)函數(shù)的交點(diǎn)的縱坐標(biāo)的絕對(duì)值.
解答:解:(1)從圖象中得出當(dāng)x>1時(shí),直線l1:y=2x與直線l2:y=kx+3的上方,
∴不等式2x>kx+3的解集為:x>1;

(2)把x=1代入y=2x,得y=2,
∴點(diǎn)P(1,2),
∵點(diǎn)P在直線y=kx+3上,
∴2=k+3,
解得:k=-1,
∴y=-x+3,
當(dāng)y=0時(shí),由0=-x+3得x=3,
∴點(diǎn)A(3,0),
∴S△OAP=×3×2=3.
點(diǎn)評(píng):求線段的長度的問題一般是轉(zhuǎn)化為求點(diǎn)的坐標(biāo)的問題來解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(a,3),則關(guān)于x的不等式x+1≥mx+n的解集為
x≥2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1、l2交于點(diǎn)A,試求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1:y=2x+4與l2:y=-x-5在同一平面角坐標(biāo)系中相交于點(diǎn)P,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1的解析表達(dá)式為y=
12
x+1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過定點(diǎn)A,B,直線l1精英家教網(wǎng)l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1,l2交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l1所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-2x+2.
(1)求點(diǎn)C的坐標(biāo)及直線l2所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求△ABC的面積;
(3)在直線l2上存在一點(diǎn)P,使得PB=PC,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案