如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:
①當(dāng)x>0時(shí),y1>y2;  ②當(dāng)x<0時(shí),x值越大,M值越;
③使得M大于2的x值不存在; ④使得M=1的x值是
其中正確的是( )

A.①②
B.①④
C.②③
D.③④
【答案】分析:利用圖象與坐標(biāo)軸交點(diǎn)以及M值的取法,分別利用圖象進(jìn)行分析即可得出答案.
解答:解:∵當(dāng)x>0時(shí),利用函數(shù)圖象可以得出y2>y1;∴①錯(cuò)誤;
∵拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;
∴當(dāng)x<0時(shí),根據(jù)函數(shù)圖象可以得出x值越大,M值越大;∴②錯(cuò)誤;
∵拋物線y1=-2x2+2,直線y2=2x+2,與y軸交點(diǎn)坐標(biāo)為:(0,2),當(dāng)x=0時(shí),M=2,拋物線y1=-2x2+2,最大值為2,故M大于2的x值不存在;
∴使得M大于2的x值不存在,∴③正確;
∵當(dāng)-1<x<0時(shí),
使得M=1時(shí),可能是y1=-2x2+2=1,解得:x1=,x2=-,
當(dāng)y2=2x+2=1,解得:x=-,
由圖象可得出:當(dāng)x=>0,此時(shí)對(duì)應(yīng)y1=M,
∵拋物線y1=-2x2+2與x軸交點(diǎn)坐標(biāo)為:(1,0),(-1,0),
∴當(dāng)-1<x<0,此時(shí)對(duì)應(yīng)y2=M,
故M=1時(shí),x1=,x2=-,
使得M=1的x值是.∴④正確;
故正確的有:③④.
故選:D.
點(diǎn)評(píng):此題主要考查了二次函數(shù)與一次函數(shù)綜合應(yīng)用,利用數(shù)形結(jié)合得出函數(shù)增減性是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖:已知拋物線y1=-x2-2x+8的圖象交x軸于點(diǎn)A,B兩點(diǎn),與y軸的正半軸交于點(diǎn)C.拋物線y2經(jīng)過B、C兩點(diǎn)且對(duì)稱軸為直線x=3.
(1)確定A、B、C三點(diǎn)的坐標(biāo);
(2)求拋物線y2的解析式;
(3)若過點(diǎn)(0,3)且平行于x軸的直線與拋物線y2交于M、N兩點(diǎn),以MN為一邊,拋物線y2上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•義烏市)如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:
①當(dāng)x>0時(shí),y1>y2;  ②當(dāng)x<0時(shí),x值越大,M值越;
③使得M大于2的x值不存在; ④使得M=1的x值是-
1
2
2
2

其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.那么使得M=1的x值為
-
1
2
2
2
-
1
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•岱山縣模擬)如圖,已知拋物線y1=ax2+bx+c與拋物線y2=x2+6x+5關(guān)于y軸對(duì)稱,并與y軸交于點(diǎn)M,與x軸交于A、B兩點(diǎn).
 
(1)求拋物線y1的解析式;
(2)若AB的中點(diǎn)為C,求sin∠CMB;
(3)若一次函數(shù)y=kx+h的圖象過點(diǎn)M,且與拋物線y1交于另一點(diǎn)N(m,n),其中m≠n,同時(shí)滿足m2-m+t=0和n2-n+t=0(t為常數(shù)).
①求k值;
②設(shè)該直線交x軸于點(diǎn)D,P為坐標(biāo)平面內(nèi)一點(diǎn),若以O(shè)、D、P、M為頂點(diǎn)的四邊形是平行四邊形,試求P點(diǎn)的坐標(biāo).(只需直接寫出點(diǎn)P的坐標(biāo),不要求解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y1=-3x2+3,直線y2=3x+3,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:
①當(dāng)x>0時(shí),y1>y2;②使得M大于3的x值不存在;③當(dāng)x<0時(shí),x值越大,M值越; ④使得M=1的x值是-
2
3
6
3

其中正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案