【題目】如圖,已知直線分別交軸、軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC 軸于點C,交拋物線于點D.
(1)若拋物線的解析式為,設其頂點為M,其對稱軸交AB于點N.
①求點M、N的坐標;
②是否存在點P,使四邊形MNPD為菱形?并說明理由;
(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
【答案】(1)① ②答案見解析 (2)存在,或
【解析】
(1)①如圖1,把拋物線解析式配成頂點式可得到頂點為的坐標為,,然后計算自變量為對應的一次函數(shù)值可得到點坐標;
②易得,設點坐標為,則,則,由于,根據(jù)平行四邊形的判定方法,當時,四邊形為平行四邊形,即,求出得到此時點坐標為,,接著計算出,然后比較與的大小關系可判斷平行四邊形是否為菱形;
(2)如圖2,利用勾股定理計算出,再表示出,則可計算出,接著表示出拋物線解析式為,則可用表示出點坐標為,所以,由于,根據(jù)相似三角形的判定方法,當時,,即;當時,,即,然后利用比例性質(zhì)分別求出的值,從而得到對應的拋物線的解析式.
(1)①如圖1,
,
頂點為的坐標為,,
當時,,則點坐標為,;
②不存在.
理由如下:
,
設點坐標為,則,
,
,
當時,四邊形為平行四邊形,即,解得(舍去),,此時點坐標為,,
,
,
平行四邊形不為菱形,
不存在點,使四邊形為菱形;
(2)存在.
如圖2,,,則,
當時,,則,
,
設拋物線的解析式為,
把代入得,解得,
拋物線的解析式為,
當時,,則,
,
,
,
當時,,即,解得,此時拋物線解析式為;
當時,,即,解得,此時拋物線解析式為;
綜上所述,滿足條件的拋物線的解析式為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為24米的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借一段墻體(墻體的最大可用長度a=10m),設AB的長為xm,所圍的花圃面積為ym2,則y的最大值是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面直角坐標系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購進一批單價為40元的球服,如果按單價60元銷售,那么一個月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗,提高銷售單價會導致銷售量的減少,即銷售單價每提高5元,銷售量相應減少20套,設銷售單價為x(120>x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關系式;
(2)當銷售單價為多少元時,月銷售額為14000元,此月共盈利多少元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 拋物線與軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1.
(1)分別寫出A,B,C三點的坐標;
A_____________;B_____________;C _____________.
(2)作△ABC關于y軸的對稱圖形△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】心理學家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學生的注意力隨教師講課的變化而變化,開始上課時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力指標數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學生的注意力更集中?
(2)一道數(shù)學競賽題,需要講16分鐘,為了效果較好,要求學生的注意力指標數(shù)最低達到36,那么經(jīng)過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為預防疾病,某校對教室進行“藥熏消毒”.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量(mg)與燃燒時間(分鐘)成正比例;燃燒后, 與成反比例(如圖所示).現(xiàn)測得藥物10分鐘燃完,此時教室內(nèi)每立方米空氣含藥量為8mg.據(jù)以上信息解答下列問題:
(1)求藥物燃燒時與的函數(shù)關系式.(2)求藥物燃燒后與的函數(shù)關系式.
(3)當每立方米空氣中含藥量低于1.6mg時,對人體方能無毒害作用,那么從消毒開始,經(jīng)多長時間學生才可以回教室?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A、B分別在x軸、y軸的正半軸上運動,點M為線段AB的中點.點D、E分別在x軸、y軸的負半軸上運動,且DE=AB=10.以DE為邊在第三象限內(nèi)作正方形DGFE,則線段MG長度的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com