如圖,在矩形ABCD中,AB=6cm,BC=8cm,動(dòng)點(diǎn)P以2cm/s的速度,從點(diǎn)B出發(fā),沿B→D的方向,向點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)Q以3cm/s的速度,從點(diǎn)D出發(fā),沿D→C→B的方向,向點(diǎn)B移動(dòng).若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)目的地時(shí)整個(gè)運(yùn)動(dòng)隨之結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求△PQD的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(s)之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
(2)在運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△PQD是以∠PDQ為頂角的等腰三角形?并說明:此時(shí),△PQD的面積恰好等于PQ2
(3)在運(yùn)動(dòng)過程中,是否存在這樣的t,使得△PQD為直角三角形?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說明理由.

【答案】分析:根據(jù)題意分別畫出相應(yīng)的圖形,(1)利用勾股定理求出BD的長度,再求出點(diǎn)P到達(dá)點(diǎn)D的時(shí)間以及點(diǎn)Q到達(dá)點(diǎn)C與點(diǎn)B的時(shí)間,然后分①點(diǎn)Q在CD上時(shí),作PE⊥DC于點(diǎn)E,利用∠BCD的正弦求出PE的長度,再表示出DQ,然后根據(jù)三角形的面積公式列式計(jì)算即可得解;②點(diǎn)Q在BC上時(shí),作PE⊥BC于點(diǎn)E,利用∠CBD的正弦表示出PE,并用t表示出CQ、BQ的長度,然后根據(jù)S△PQD=S△BCD-S△CDQ-S△PBQ,列式整理即可得解.
(2)由DP=DQ,推出10-2t=3t,t的值,得PD的值,確定Q點(diǎn)與C點(diǎn)重合,根據(jù)(1)所推出的結(jié)論求得S△PQD=cm2,做PH⊥DC,由PH∥BC,得比例式,便可求出PH,DH的值,繼而得HQ的值,運(yùn)用勾股定理求出PQ2=cm2后,便可確定S△PQD=PQ2;
(3)分情況進(jìn)行討論,①若∠PQD=90°,△PQD為直角三角形,結(jié)合圖形和題意推出比例式后,把PD=10-2t,DQ=3t,BD=10cm,CD=6cm代入,即可求出t=,②若∠QPD=90°,△PQD為直角三角形,由勾股定理得PD2=PQ2=DQ2,由P點(diǎn)的運(yùn)動(dòng)速度為2cm/秒,Q點(diǎn)的運(yùn)動(dòng)速度為3cm/秒,推出BP=2t,CD+CQ=3t,可知DP=10-2t,BQ=14-3t,CQ=3t-6,繼而推出PD2、PQ2、DQ2,關(guān)于t的表達(dá)式,根據(jù)等式PD2=PQ2=DQ2,即可求出t=
解答:解:(1)∵AB=6cm,BC=8cm,
∴BD===10,
∵點(diǎn)P的速度是2cm/s,點(diǎn)Q的速度是3cm/m,
∴點(diǎn)P從點(diǎn)B到達(dá)點(diǎn)D的時(shí)間是10÷2=5秒,
點(diǎn)Q從點(diǎn)D到達(dá)點(diǎn)C的時(shí)間是6÷3=2秒,
到達(dá)點(diǎn)B的時(shí)間是(6+8)÷3=秒,
①如圖1①,點(diǎn)Q在CD上時(shí),作PE⊥DC于點(diǎn)E,
則sin∠BDC==
=,
解得PE=(5-t),
S△PQD=×3t•(5-t)=t(5-t)=-t2+12t(0<t≤2);
②如圖2②,點(diǎn)Q在BC上時(shí),作PE⊥BC于點(diǎn)E,
則sin∠CBD==
=,
解得PE=t,
此時(shí),CQ=3t-6,BQ=(6+8)-3t=14-3t,
S△PQD=S△BCD-S△CDQ-S△PBQ,
=×8×6-×6(3t-6)-×(14-3t)×t,
=24-9t+18-t+t2
=t2-t+42(2≤t<),
綜上所述,S與t的關(guān)系式為S=-t2+12t(0<t≤2);
S=t2-t+42(2≤t<);

(2)如圖2,∵DP=DQ,PB=2t,DQ=3t,BD=10cm,
∴10-2t=3t,
∴t=2,
∴DQ=3t=6,
∴Q點(diǎn)與C點(diǎn)重合,
∴S△PQD=-t2+12t=cm2,
做PH⊥DC,
∴PH∥BC,

∵t=2,
∴PD=6cm,
,
∴PH=cm,DH=cm,
∴HQ=HC=6-=cm,
∵∠PHC=90°,
∴PQ2=cm2,
PQ2=cm2,
即S△PQD=PQ2;

(3)存在這樣的t,使得△PQD為直角三角形,
①如圖3,若∠PQD=90°,△PQD為直角三角形,
∵矩形ABCD,
∴PQ∥BC,

∵PD=10-2t,DQ=3t,BD=10cm,CD=6cm,
,
∴t=,
②如圖4,若∠QPD=90°,△PQD為直角三角形,
∴QP⊥BD,
∴PD2=PQ2=DQ2,
∵P點(diǎn)的運(yùn)動(dòng)速度為2cm/秒,Q點(diǎn)的運(yùn)動(dòng)速度為3cm/秒,
∴BP=2t,CD+CQ=3t,
∵CD=6cm,BD=10cm,BC=8cm,
∴DP=10-2t,BQ=14-3t,CQ=3t-6,
∵∠C=90°,PQ⊥BD,
∴PD2=(10-2t)2=100-40t+4t2,
PQ2=BQ2-BP2=(14-3t)2-(2t)2=196-84t+5t2
DQ2=CD2+CQ2=62+(3t-6)2=72+9t2-36t,
∵PD2=PQ2=DQ2,
∴100-40t+4t2+196-84t+5t2=72+9t2-36t,
解方程得:t=,
∴當(dāng)t=或者t=時(shí),△PQD為直角三角形.
點(diǎn)評(píng):本題主要考查直角三角形和等腰三角形的判定與性質(zhì),勾股定理,平行線的性質(zhì),矩形的性質(zhì)等知識(shí)點(diǎn),關(guān)鍵在于對(duì)各相關(guān)性質(zhì)定理的綜合應(yīng)用,在解題的過程中認(rèn)真的進(jìn)行計(jì)算,正確的進(jìn)行分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案