【題目】已知拋物線y=﹣x2+bx+c與直線y=﹣x+m相交于第一象限內(nèi)不同的兩點(diǎn)A(4,n),B(1,4),
(1)求此拋物線的解析式.
(2)拋物線上是否存點(diǎn)P,使直線OP將線段AB平分?若存在直接求出P點(diǎn)坐標(biāo);若不存在說(shuō)明理由.
【答案】(1)y=-x2+4x+1(2)存在點(diǎn)P1(,),P2(,)
【解析】
(1)根據(jù)待定系數(shù)法求出m、n的值,然后根據(jù)待定系數(shù)法求出二次函數(shù)的解析式;
(2)根據(jù)平分線段AB求出AB的中點(diǎn)M,然后求出OM的解析式,構(gòu)造方程組求解即可.
(1)∵點(diǎn)B(1,4)在y=-x+m上
∴4=-1+m
解得m=5
∴y=-x+5
∵A(4,n)在直線y=-x+5上
∴n=-4+5=1
即A為(4,1)
∴
解得
∴拋物線的解析式為:y=-x2+4x+1
(2)存在
由(1)知:AB的中點(diǎn)M為(,)
∴直線OM為y=x
因此可得
解得 或
即存在點(diǎn)P1(,),P2(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線BM,點(diǎn)A,C,D分別為⊙O的三等分點(diǎn),連接AC,AD,DC,延長(zhǎng)AD交BM于點(diǎn)E,CD交AB于點(diǎn)F.
(1)求證:CD∥BM;
(2)連接OE,若DE=m,求△OBE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一張簡(jiǎn)易活動(dòng)餐桌,測(cè)得OA=OB=30cm,OC=OD=50cm,現(xiàn)要求桌面離地面的高度為40cm,那么兩條桌腳的張角∠COD的度數(shù)大小應(yīng)為( )
A. 100° B. 120° C. 135° D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣x﹣.
(1)在平面直角坐標(biāo)系內(nèi),畫出該二次函數(shù)的圖象;
(2)根據(jù)圖象寫出:①當(dāng)x 時(shí),y>0;
②當(dāng)0<x<4時(shí),y的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓上有A、B、C三點(diǎn),直線l與圓相切于點(diǎn)A,CD平分∠ACB,且與l交于點(diǎn)D,若=80°,=60°,則∠ADC的度數(shù)為( 。
A. 80° B. 85° C. 90° D. 95°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5,過(guò)點(diǎn)A1、A2、A3、A4、A5分別作x軸的垂線與反比例函數(shù)y=(x≠0)的圖象相交于點(diǎn)P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并設(shè)其面積分別為S1、S2、S3、S4、S5,則S10=_____.(n≥1的整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD;請(qǐng)證明你的結(jié)論.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上,
(1)求拋物線的表達(dá)式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)M(點(diǎn)C除外),使△ABM的面積等于△ABC的面積,求M點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O內(nèi)切于Rt△ABC,點(diǎn)P、點(diǎn)Q分別在直角邊BC、斜邊AB上,PQ⊥AB,且PQ與⊙O相切,若AC=2PQ,則tan∠B的值為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com