如圖,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,連接BC、DE相交于點(diǎn)F,BC與AD相交于點(diǎn)G.

(1)求證:BC=DE;

(2)如果∠ABC=∠CBD ,那么線段FD是線段FG和FB的比例中項(xiàng)嗎?為什么?

 

【答案】

(1)由∠BAD=∠CAE可得∠BAC=∠DAE,再由AB=AD,AC=AE可得△BAC≌△DAE,即可證得結(jié)論;(2)是

【解析】

試題分析:(1)由∠BAD=∠CAE可得∠BAC=∠DAE,再由AB=AD,AC=AE可得△BAC≌△DAE,即可證得結(jié)論;

(2)由(1)知∠ABC=∠ADE,由∠ABC =∠CBD可得∠CBD=∠ADE,再有∠DFG=∠BFD可得△DFG∽△BFD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)果.

(1)∵∠BAD=∠CAE

∴∠BAC=∠DAE 

∵AB=AD,AC=AE

∴△BAC≌△DAE

∴BC=DE;

(2)FD是FG和FB的比例中項(xiàng)

理由,由(1)知∠ABC=∠ADE

∵∠ABC =∠CBD

∴∠CBD=∠ADE

又∵∠DFG=∠BFD

∴△DFG∽△BFD 

∴FG:FD=FD:BF

∴FD2=FG·FB.

考點(diǎn):全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)

點(diǎn)評(píng):相似三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見題,一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,在△ABD和△ACE中,有下列四個(gè)等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個(gè)條件為題設(shè),填入已知欄中,一個(gè)論斷為結(jié)論,填入下面求證欄中,使之組成一個(gè)真命題,并寫出證明過程.
已知:
在△ABD和△ACE中,AB=AC,AD=AE,BD=CE

求證:
∠1=∠2

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,連接BC、DE相交于點(diǎn)F,BC與AD相交于點(diǎn)G.求證:BC=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABD和△BAC中,∠1=∠2,∠C=∠D,AC、BD相交于點(diǎn)E,則下列結(jié)論中正確的個(gè)數(shù)有( 。
①∠DAE=∠CBE;②△ADE≌△BCE;③CE=DE;④△EAB為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,連接BC、DE相交于點(diǎn)F,BC與AD相交于點(diǎn)G.
(1)試說明:△ABC≌△ADE.
(2)如果線段FD是線段FG和FB的比例中項(xiàng),那么BC平分∠ABD嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABD和△ACE中,有下列四個(gè)等式:
①AB=AC  ②AD=AE  ③∠1=∠2  ④BD=CE.
請(qǐng)你從中選三個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論,寫出一個(gè)正確的命題,并加以說理.
題設(shè):
AB=AC,AD=AE,BD=CE
AB=AC,AD=AE,BD=CE
,結(jié)論:
∠1=∠2
∠1=∠2
.(不能只填序號(hào))理由如下:

查看答案和解析>>

同步練習(xí)冊(cè)答案