若點(diǎn)A(2,m)在x軸上,則點(diǎn)B(m-1,m+1)在


  1. A.
    第一象限
  2. B.
    第二象限
  3. C.
    第三象限
  4. D.
    第四象限
B
分析:根據(jù)在x軸上的點(diǎn)的縱坐標(biāo)等于0列式求解即可.
解:∵點(diǎn)A(2,m)在x軸上,
∴m=0,
∴m-1=-1,m+1=1∴B(-1,1)在第二象限
故答案為:B.
點(diǎn)評(píng):本題考查了點(diǎn)的坐標(biāo),是基礎(chǔ)題,明確x軸上的點(diǎn)縱坐標(biāo)為0是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為半圓的直徑,點(diǎn)C、D在半圓上.
(1)若
BC
=3
AD
,
CD
=2
AD
,求∠DAB和∠ABC的大。
(2)若點(diǎn)C、D在半圓上運(yùn)動(dòng),并保持弧CD的長(zhǎng)度不變,(點(diǎn)C、D不與點(diǎn)A、B重合).試比較∠DAB和∠ABC的大小.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,在△ABC中,CA=CB,CA、CB的垂直平分線的交點(diǎn)O在AB上,M、N分別在直線AC、BC上,∠MON=∠A=45°
(1)如圖1,若點(diǎn)M、N分別在邊AC、BC上,求證:CN+MN=AM;
(2)如圖2,若點(diǎn)M在邊AC上,點(diǎn)N在BC邊的延長(zhǎng)線上,試猜想CN、MN、AM之間的數(shù)量關(guān)系,請(qǐng)寫(xiě)出你的結(jié)論(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是斜邊BC的中點(diǎn).
(1)如圖①,若點(diǎn)E,F(xiàn)分別在邊AB,AC上,且AE=CF,連接DE,DF,EF,觀察,猜想△DEF是否為等腰直角三角形,并證明你的猜想.
(2)如圖②,若點(diǎn)E,F(xiàn)分別在邊AB,CA的延長(zhǎng)線上,且AE=CF,連接DE,DF,EF,那么(1)中所得到的結(jié)論還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:
點(diǎn)A、B在數(shù)軸上分別表示兩個(gè)數(shù)a、b,A、B兩點(diǎn)間的距離記為|AB|,O表示原點(diǎn).當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A為原點(diǎn),如圖1,則|AB|=|OB|=|b|=|a-b|;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖2,若點(diǎn)A、B都在原點(diǎn)的右邊時(shí),|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,若點(diǎn)A、B都在原點(diǎn)的左邊時(shí),|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;
③如圖4,若點(diǎn)A、B在原點(diǎn)的兩邊時(shí),|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.
回答下列問(wèn)題:
(1)綜上所述,數(shù)軸上A、B兩點(diǎn)間的距離為|AB|=
|a-b|
|a-b|

(2)若數(shù)軸上的點(diǎn)A表示的數(shù)為2,點(diǎn)B表示的數(shù)為-3,則A、B兩點(diǎn)間的距離為
5
5
;
(3)若數(shù)軸上的點(diǎn)A表示的數(shù)為x,點(diǎn)B表示的數(shù)為-1,則|AB|=
|x+1|
|x+1|
,若|AB|=3,則x的值為
2或-4
2或-4

(4)代數(shù)式|x-2|+|x+3|的最小值為
5
5
,取得最小值時(shí)x的取值范圍是
-3≤x≤2
-3≤x≤2

(5)滿足|x+1|+|x+4|>3的x的取值范圍是
x<-4或x>-1
x<-4或x>-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問(wèn)題:

(1)試說(shuō)明:OB∥AC;
(2)如圖②,若點(diǎn)E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.試求∠EOC的度數(shù);
(3)在(2)的條件下,若左右平行移動(dòng)AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值;
(4)在(3)的條件下,當(dāng)∠OEB=∠OCA時(shí),試求∠OCA的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案