如圖,已知矩形ABCD中,AB=4cm,AD=10cm,點P在邊BC上移動,點E、F、G、H分別是AB、AP、DP、DC的中點.
(1)求證:EF+GH=5cm;
(2)求當(dāng)∠APD=90°時,
EF
GH
的值.
(1)證明:∵矩形ABCD,AD=10cm,
∴BC=AD=10cm.
∵E、F、G、H分別是AB、AP、DP、DC的中點,
∴EF+GH=
1
2
BP+
1
2
PC=
1
2
BC.
∴EF+GH=5cm.

(2)∵矩形ABCD,
∴∠B=∠C=90°,
又∵∠APD=90°,
在直角△APD中,AD2=AP2+DP2,
同理,AP2=AB2+BP2,PD2=PC2+CD2=PC2+AB2,
∴AD2=AP2+DP2=AB2+BP2+PC2+DC2=BP2+(BC-BP)2+2AB2=BP2+(10-BP)2+32,
即100=2BP2-20BP+100+32,
解得BP=2或8(cm),
當(dāng)BP=2時,PC=8,EF=1,GH=4,這時
EF
GH
=
1
4

當(dāng)BP=8時,PC=2,EF=4,GH=1,這時
EF
GH
=4

EF
GH
的值為
1
4
或4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

不能判定四邊形ABCD為平行四邊形的條件是( 。
A.AB=CD,AD=BCB.AB=CD,ABCD
C.AB=CD,ADCDD.AD=BC,ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=4,AD=2,E、F分別是AB、CD上的點,且BE=DF,連接BF、DE.
(1)求證:四邊形DEBF是平行四邊形;
(2)當(dāng)AE的長為多少時,四邊形DEBF是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.若∠ACB=30°,AB=1,CC1=x,
△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:
①△A1AD1≌△CC1B;
②當(dāng)x=1時,四邊形ABC1D1是菱形;
③當(dāng)x=2時,△BDD1為等邊三角形;
④s=
3
8
(x-2)2(0<x<2);
其中正確的是______(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連接菱形的各邊中點所得到的四邊形是( 。
A.平行四邊形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點.若AB=5,AD=12,則四邊形ABOM的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,F(xiàn)是BC中點,E是AD上一點,且∠EBC=30°,∠BEC=90°,EF=8cm,則矩形的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,長方形ABCD中,AB=5,BC=3,P為CD上一點,當(dāng)DP長為______時,△PAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=2,則矩形的對角線AC的長是( 。
A.2B.4C.2
3
D.4
3

查看答案和解析>>

同步練習(xí)冊答案