【題目】如圖,在Rt直角ABC中,∠BAC90°,ABAC,點(diǎn)DBC中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),則下列結(jié)論:①△DEF是等腰直角三角形;②AECF;③△BDE≌△ADF;④BE+CFEF,其中正確結(jié)論是_______________

【答案】①②③

【解析】

根據(jù)等腰直角三角形的性質(zhì)可得∠CAD=B=45°,根據(jù)同角的余角相等求出∠ADF=BDE,然后利用角邊角證明BDEADF全等,判斷出③正確;根據(jù)全等三角形對(duì)應(yīng)邊相等可得DE=DFBE=AF,從而得到DEF是等腰直角三角形,判斷出①正確;再求出AE=CF,判斷出②正確;根據(jù)BE+CF=AF+AE,利用三角形的任意兩邊之和大于第三邊可得BE+CFEF,判斷出④錯(cuò)誤.

解:∵∠B=45°,AB=AC,
∴△ABC是等腰直角三角形,
∵點(diǎn)DBC中點(diǎn),
AD=CD=BDADBC,∠CAD=45°,
∴∠CAD=B,
∵∠MDN是直角,
∴∠ADF+ADE=90°
∵∠BDE+ADE=ADB=90°,
∴∠ADF=BDE,
BDEADF中,

,
∴△BDE≌△ADFASA),
故③正確;
DE=DF、BE=AF,
∴△DEF是等腰直角三角形,
故①正確;
AE=AB-BECF=AC-AF,
AE=CF,
故②正確;
BE+CF=AF+AE
BE+CFEF,
故④錯(cuò)誤;
綜上所述,正確的結(jié)論有①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,點(diǎn)A、B分別在xy軸的正半軸上,將線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C

1)若A6,0),B0,4),求點(diǎn)C的坐標(biāo);

2)以B為直角頂點(diǎn),以ABOB為直角邊分別在第一、二象限作等腰Rt△ABD和等腰Rt△OBE,連DEy軸于點(diǎn)M,當(dāng)點(diǎn)A和點(diǎn)B分別在x、y軸的正半軸上運(yùn)動(dòng)時(shí),判斷并證明AOMB的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店11月份購(gòu)進(jìn)甲、乙兩種水果共花費(fèi)1700元,其中甲種水果8/千克,乙種水果18/千克.12月份,這兩種水果的進(jìn)價(jià)上調(diào)為:甲種水果10/千克,乙種水果20/千克.

1)若該店12月份購(gòu)進(jìn)這兩種水果的數(shù)量與11月份都相同,將多支付貨款300元,求該店11月份購(gòu)進(jìn)甲、乙兩種水果分別是多少千克?

2)若12月份將這兩種水果進(jìn)貨總量減少到120千克,設(shè)購(gòu)進(jìn)甲種水果a千克,需要支付的貨款為w元,求wa的函數(shù)關(guān)系式;

3)在(2)的條件下,若甲種水果不超過(guò)90千克,則12月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若一個(gè)三角形中,其中有一個(gè)內(nèi)角是另外一個(gè)內(nèi)角的一半,則這樣的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在鈍角三角形中,,,過(guò)點(diǎn)的直線邊于點(diǎn).點(diǎn)在直線上,且

1)若,點(diǎn)延長(zhǎng)線上.

當(dāng),點(diǎn)恰好為中點(diǎn)時(shí),依據(jù)題意補(bǔ)全圖1.請(qǐng)寫出圖中的一個(gè)半角三角形_______;

如圖2,若,圖中是否存在半角三角形除外),若存在,請(qǐng)寫出圖中的半角三角形,并證明;若不存在,請(qǐng)說(shuō)明理由;

2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請(qǐng)直接寫出,, 滿足的數(shù)量關(guān)系:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)上一點(diǎn)且,過(guò)點(diǎn)畫線段,使點(diǎn)的邊上且點(diǎn),的一個(gè)頂點(diǎn)組成的小三角形與相似,則滿足條件的線段的長(zhǎng)度分別為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知等邊ABC中,DAC的中點(diǎn),EBC延長(zhǎng)線上的一點(diǎn),且CE=CD,DMBC,垂足為M.

(1)求∠E的度數(shù).

(2)求證:MBE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),若點(diǎn)PABC三個(gè)頂點(diǎn)中的任意兩個(gè)頂點(diǎn)連接形成的三角形都是等腰三角形,則稱點(diǎn)PABC的巧妙點(diǎn).

1)如圖1,求作ABC的巧妙點(diǎn)P(尺規(guī)作圖,不寫作法,保留作圖痕跡).

2)如圖2,在ABC中,∠A=80°,AB=AC,求作ABC的所有巧妙點(diǎn)P (尺規(guī)作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數(shù)是 .

3)等邊三角形的巧妙點(diǎn)的個(gè)數(shù)有(

A.2 B.6 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁4名同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選2名同學(xué)打第一場(chǎng)比賽,求下列事件的概率。

(1)已確定甲打第一場(chǎng),再?gòu)钠溆?名同學(xué)中隨機(jī)選取1名,恰好選中乙同學(xué);

(2)隨機(jī)選取2名同學(xué),其中有乙同學(xué).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】建立模型:如圖1,已知ABC,ACBC,∠C90°,頂點(diǎn)C在直線l上.

1)操作:

過(guò)點(diǎn)AAD于點(diǎn)D,過(guò)點(diǎn)BBE于點(diǎn)E.求證:CAD≌△BCE

2)模型應(yīng)用:

①如圖2,在直角坐標(biāo)系中,直線y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到直線.求直線的函數(shù)表達(dá)式.

②如圖3,在直角坐標(biāo)系中,點(diǎn)B4,3),作BAy軸于點(diǎn)A,作BCx軸于點(diǎn)C,P是直線BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Qa5a2)位于第一象限內(nèi).問(wèn)點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案