【題目】如圖①,在平面直角坐標(biāo)系中,直線y=﹣ x+ 與x軸交于C點(diǎn),與y軸交于點(diǎn)E,點(diǎn)A在x軸的負(fù)半軸,以A點(diǎn)為圓心,AO為半徑的圓與直線的CE相切于點(diǎn)F,交x軸負(fù)半軸于另一點(diǎn)B.
(1)求⊙A的半徑;
(2)連BF、AE,則BF與AE之間有什么位置關(guān)系?寫出結(jié)論并證明.
(3)如圖②,以AC為直徑作⊙O1交y軸于M,N兩點(diǎn),點(diǎn)P是弧MC上任意一點(diǎn),點(diǎn)Q是弧PM的中點(diǎn),連CP,NQ,延長CP,NQ交于D點(diǎn),求CD的長.

【答案】
(1)解:連接AF,如圖①a.

∵直線y=﹣ x+ 與x軸交于C點(diǎn),與y軸交于E點(diǎn),

∴點(diǎn)C的坐標(biāo)為(2,0),點(diǎn)E的坐標(biāo)為(0, ),

∴OC=2,OE=

∵∠EOC=90°,

∴EC= =

∵AO⊥OE,∴直線OE與⊙A相切于點(diǎn)O.

又∵直線CE與⊙A相切于點(diǎn)F,

∴∠AFC=90°,EF=OE=

∴FC=FE+EC= + =2

在Rt△AFC中,

設(shè)AF=x,則AO=x,AC=x+2.

根據(jù)勾股定理可得:x2+(2 2=(x+2)2,

解得:x=1.

∴⊙A的半徑為1


(2)解:BF∥AE.

證明:連接OF,交AE于點(diǎn)H,如圖①b.

∵EF、EO分別與⊙A相切于點(diǎn)F、O,

∴EF=EO,EA平分∠FEO,

∴EA⊥OF,即∠AHO=90°.

∵BO是⊙A的直徑,

∴∠BFO=90°,

∴∠BFO=∠AHO,

∴BF∥AE


(3)解:連接QC、QM、MC、NC、MO1,如圖②.

∵AC是⊙O1的直徑,AC⊥MN,

∴∠NQC=∠MNC.

∵∠MQC+∠MNC=180°,∠DQC+∠NQC=180°,

∴∠MQC=∠DQC.

∵點(diǎn)Q是 的中點(diǎn),

∴∠MCQ=∠PCQ.

在△MCQ和△DCQ中,

,

∴△MCQ≌△DCQ(ASA),

∴MC=DC.

∵OA=1,OC=2,

∴AC=3,AO1= ,OO1= ,

在Rt△MOO1中,

MO1=AO1= ,OO1=

∴MO= =

在Rt△MOC中,

MC= = ,

∴DC=

∴CD的長為


【解析】(1)連接AF,如圖①a,由直線EC的解析式可求出OE、OC的長,根據(jù)勾股定理可求出EC的長,然后根據(jù)切線長定理可求出EF的長,然后在Rt△AFC中運(yùn)用勾股定理就可求出圓的半徑.(2)連接OF,交AE于點(diǎn)H,如圖①b,根據(jù)切線長定理可得EF=EO,EA平分∠FEO,根據(jù)等腰三角形的性質(zhì)可得∠AHO=90°,由BO是⊙A的直徑可得∠BFO=90°,從而得到∠BFO=∠AHO,即可得到BF∥AE.(3)連接QC、QM、MC、NC、MO1 , 如圖②,易證△MCQ≌△DCQ,則有MC=DC.在Rt△MOO1中,運(yùn)用勾股定理可求出MO的長,然后在Rt△MOC中,運(yùn)用勾股定理就可求出MC,即可得到CD的長.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的判定的相關(guān)知識,掌握同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對角線OB的中點(diǎn),點(diǎn)E(4,n)在邊AB上,反比例函數(shù) (k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D、E,且tan∠BOA=

(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求線段OG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將斜邊長為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點(diǎn).現(xiàn)將此三角板繞點(diǎn)O順時針旋轉(zhuǎn)120°后點(diǎn)P的對應(yīng)點(diǎn)的坐標(biāo)是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)閱讀下面例題,解答問題:

例題:已知二次三項(xiàng)式x24xm有一個因式是(x3),求另一個因式以及m的值。

解:設(shè)另一個因式為(xn),得 x24xm=(x3)(xn

x24xmx2+(n3x3n

解得:n=-7, m=-21 另一個因式為(x7),m的值為-21

問題:仿照以上方法解答下面問題:

已知二次三項(xiàng)式2x23xk有一個因式是(2x5),求另一個因式以及k的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2012年6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學(xué)的成績,制作成直方圖(如圖).
(1)分?jǐn)?shù)段在范圍的人數(shù)最多;
(2)全校共有多少人參加比賽?
(3)學(xué)校決定選派本次比賽成績最好的3人參加南寧市中學(xué)生環(huán)保演講決賽,并為參賽選手準(zhǔn)備了紅、藍(lán)、白顏色的上衣各1件和2條白色、1條藍(lán)色的褲子.請用“列表法”或“樹形圖法”表示上衣和褲子搭配的所有可能出現(xiàn)的結(jié)果,并求出上衣和能搭配成同一種顏色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.
(1)求購買一個籃球、一個足球各需多少元?
(2)若體育老師帶了6000元去購買這種籃球與足球共80個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠CAB=30°,AB=10,點(diǎn)D在線段AB上,AD=2.點(diǎn)P,Q以相同的速度從D點(diǎn)同時出發(fā),點(diǎn)P沿DB方向運(yùn)動,點(diǎn)Q沿DA方向到點(diǎn)A后立刻以原速返回向點(diǎn)B運(yùn)動.以PQ為直徑構(gòu)造⊙O,過點(diǎn)P作⊙O的切線交折線AC﹣CB于點(diǎn)E,將線段EP繞點(diǎn)E順時針旋轉(zhuǎn)60°得到EF,過F作FG⊥EP于G,當(dāng)P運(yùn)動到點(diǎn)B時,Q也停止運(yùn)動,設(shè)DP=m.
(1)當(dāng)2<m≤8時,AP=,AQ=.(用m的代數(shù)式表示)
(2)當(dāng)線段FG長度達(dá)到最大時,求m的值;
(3)在點(diǎn)P,Q整個運(yùn)動過程中, ①當(dāng)m為何值時,⊙O與△ABC的一邊相切?
②直接寫出點(diǎn)F所經(jīng)過的路徑長是.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,第一次將OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2第三次將OA2B2變換成△OA3B3;已知變換過程中各點(diǎn)坐標(biāo)分別為A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).

(1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標(biāo)為   ,B4的坐標(biāo)為   

(2)按以上規(guī)律將OAB進(jìn)行n次變換得到△OAnBn,則An的坐標(biāo)為   ,Bn的坐標(biāo)為   ;

(3)△OAnBn的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,則點(diǎn)B到AD的距離是(
A.3
B.4
C.2
D.

查看答案和解析>>

同步練習(xí)冊答案