在正方形ABCD中,N是DC的中點,M是AD上異于D的點,且∠NMB=∠MBC,則tan∠ABM=________.


分析:根據(jù)∠NMB=∠MBC,延長MN,BC相交于T,得到等腰△TBM,連接點T和MB的中點,得到相似三角形,然后由相似三角形的性質(zhì)進行計算,求出∠ABM的正切.
解答:解:如圖:延長MN交BC的延長線于T,設MB的中點為O,連TO,則OT⊥BM,
∵∠ABM+∠MBT=90°,
∠OTB+∠MBT=90°,
∴∠ABM=∠OTB,則△BAM∽△TOB,
=,即=,即MB2=2AM•BT ①
令DN=1,CT=MD=K,則:AM=2-K,BM=,BT=2+K,
代入①中得:4+(2-K)2=2(2-K)(2+K),
解方程得:K1=0(舍去),K2=
∴AM=2-=
tan∠ABM===
故答案是:
點評:本題考查的是解直角三角形,運用正方形的性質(zhì),根據(jù)題目中角的關(guān)系,判斷兩個三角形相似,然后用相似三角形的性質(zhì)進行計算,求出直角三角形中邊的長度,再用正切的定義求出角的正切值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點,F(xiàn)為DC上的一點,且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在正方形ABCD中,點G是BC上任意一點,連接AG,過B,D兩點分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點,求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、在正方形ABCD中,P為對角線BD上一點,PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在正方形ABCD中,P是CD上一點,且AP=BC+CP,Q為CD中點,求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習冊答案