解:
(1)證明:連接AE.
∵AB為⊙O的直徑,
∴∠AEB=90°(直徑所對的圓周角是直角),
∴∠BAE+∠ABE=90°(直角三角形的兩個銳角互余);
又∵AB=AC,AE⊥BC,
∴AE平分∠BAC,即∠BAE=∠CAE;
∵∠CAB=2∠CBF,
∴∠BAE=∠CBF,
∴∠BAE+∠ABE=∠ABE+∠CBF=90°,即AB⊥BF,
∵OB是半徑,
∴BF為⊙O的切線;
(2)過點C作CG⊥BF于點G.
在Rt△ABF中,AB=6,BF=8,
∴AC=10(勾股定理);
又∵AC=AB=6
∴CF=4;
∵CG⊥BF,AB⊥BF,
∴CG∥AB,
∴
=
=
=
(平行線截線段成比例),
∴FG=
,
由勾股定理得:CG=
=
,
∴BG=BF-FG=8-
=
,
在Rt△BCG中,tan∠CBF=
=
.
分析:(1)連接AE.欲證BF是⊙O的切線,只需證明AB⊥BF即可;
(2)作輔助線CG(過點C作CG⊥BF于點G)構(gòu)建平行線AB∥CG.由“平行線截線段成比例”知
=
=
=
,從而求得FG的值;然后根據(jù)圖形中相關(guān)線段間的和差關(guān)系求得直角三角形CBG的兩直角邊BG、CG的長度;最后由銳角三角函數(shù)的定義來求tan∠CBF的值.
點評:本題考查了圓的綜合題:切線的判定與性質(zhì)、勾股定理、平行線截線段成比例、直角所對的圓周角是直角等知識點.