【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫出AB+AC與AE之間的等量關(guān)系.
【答案】
(1)證明:∵DE⊥AB于E,DF⊥AC于F,
∴∠E=∠DFC=90°,
∴△BDE與△CDE均為直角三角形,
∵
∴△BDE≌△CDF,
∴DE=DF,即AD平分∠BAC
(2)AB+AC=2AE.
證明:∵BE=CF,AD平分∠BAC,
∴∠EAD=∠CAD,
∵∠E=∠AFD=90°,
∴∠ADE=∠ADF,
在△AED與△AFD中,
∵ ,
∴△AED≌△AFD,
∴AE=AF,
∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE
【解析】(1)根據(jù)相“HL”定理得出△BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(1)中△BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.
【考點精析】掌握角平分線的性質(zhì)定理是解答本題的根本,需要知道定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫下列空格,完成證明.
已知:如圖,AD是△ABC的角平分線,點E在BC上,點F在CA的延長線上,EF∥AD,EF交AB于點G.
求證:∠3=∠F
證明:因為AD是△ABC的角平分線 ( 已知 )
所以∠1=∠2 ()
因為EF∥AD(已知)
所以∠3=∠()
∠F=∠()
所以∠3=∠F().
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗媽媽在網(wǎng)上做淘寶生意,專門銷售女式鞋子,一次,小麗發(fā)現(xiàn)一個進(jìn)貨單上的一個信息是:A款鞋的進(jìn)價比B款鞋進(jìn)價多20元,花500元進(jìn)A款鞋的數(shù)量和花400元進(jìn)B款鞋的數(shù)量相同.
(1)問A、B款鞋的進(jìn)價分別是多少元?
(2)小麗在銷售單上記錄了兩天的數(shù)據(jù)如表:
日期 | A款女鞋銷量 | B款女鞋銷量 | 銷售總額 |
6月1日 | 12雙 | 8雙 | 2240元 |
6月2日 | 8雙 | 10雙 | 1960元 |
請問兩種鞋的銷售價分別是多少?
(3)小麗媽媽說:“兩款鞋的利潤率相同”,請通過計算,結(jié)合(1)(2)所給信息,判斷小麗媽媽的說法是否正確,如果正確,請說明理由;如果錯誤,能否只調(diào)整其中一款的售價,使得兩款鞋的利潤率相同?能否同時調(diào)整兩款的售價,使得兩款鞋的利潤率相同?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com