精英家教網 > 初中數學 > 題目詳情
9、為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
求:(1)分別求出圖1、圖2的陰影部分面積;
(2)請你給出一種草皮運送方案,并求出總運費;
(3)請設計總運費最省的草皮運送方案,并說明理由.
分析:(1)根據圖形和題意可知SA=(92-2)×(42-2)=3600米2,SD=(62-2)×40=2400米2;
(2)本小題為結論為開放題,可選擇一種方案再計算總運費,計算正確均可;
(3)設甲地運往A校的草皮為x米2,總運費為y元,則甲地運往B校的草皮為(3500-x)米2,乙地運往A校的草皮為(3600-x)米2,乙地運往B校的草皮為(x-1100)米2,可得y=2.5x+11650,由x≥0,(3500-x)≥0,(3600-x)≥0,(x-1100)≥0,得到1100≤x≤3500,所以x=1100時,y有最小值=14400(元).
解答:解:(1)依題意得
SA=(92-2)×(42-2)=3600米2
SD=(62-2)×40=2400米2;
(2)本小題為結論為開放題,

如:其中一種運送草皮分配方案(米2
總運費=20×0.15×1500+10×0.15×2000+15×0.2×2100+20×0.2×400
=15400(元);
(3)設甲地運往A校的草皮為x米2,總運費為y元,
由于草皮的總供求數量都是6000米2
∴甲地運往B校的草皮為(3500-x)米2,
乙地運往A校的草皮為(3600-x)米2
乙地運往B校的草皮為(x-1100)米2,
∴y=20×0.15x+10×0.15×(3500-x)+15×0.2×(3600-x)+20×0.2×(x-1000)
=2.5x+11650,
∵x≥0,(3500-x)≥0,(3600-x)≥0,(x-1100)≥0,
∴1100≤x≤3500,
∴當x=1100時,y有最小值.
即y=2.5×1100+11650=14400(元).
總運費最省的方案為
點評:此題主要考查利用一次函數的模型解決實際問題的能力.要先根據題意列出函數關系式,再代數求值.解題的關鍵是要分析題意根據實際意義求解.注意要根據自變量的實際范圍確定函數的最值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
求:(1)分別求出圖1、圖2的陰影部分面積;
(2)請你給出一種草皮運送方案,并求出總運費;
(3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
 A校B!
 路程(千米)運費單價(元) 路程(千米) 運費單價(元)  
 甲地          20          0.15          10            0.15
 乙地          15          0.20          20            0.20
(注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

查看答案和解析>>

科目:初中數學 來源:2009年重慶市中考數學權威預測試卷(四)(解析版) 題型:解答題

為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
求:(1)分別求出圖1、圖2的陰影部分面積;
(2)請你給出一種草皮運送方案,并求出總運費;
(3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
A校B校
路程(千米)運費單價(元) 路程(千米) 運費單價(元)
甲地 20 0.15 10 0.15
乙地 15 0.20 20 0.20
(注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《一次函數》(04)(解析版) 題型:解答題

(2004•麗水)為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
求:(1)分別求出圖1、圖2的陰影部分面積;
(2)請你給出一種草皮運送方案,并求出總運費;
(3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
A校B校
路程(千米)運費單價(元) 路程(千米) 運費單價(元)
甲地 20 0.15 10 0.15
乙地 15 0.20 20 0.20
(注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

查看答案和解析>>

科目:初中數學 來源:2004年浙江省麗水市中考數學試卷(解析版) 題型:解答題

(2004•麗水)為了美化校園環(huán)境,爭創(chuàng)綠色學校,某縣教育局委托園林公司對A、B兩校進行校園綠化.已知A校有如圖1的陰影部分空地需鋪設草坪,B校有如圖2的陰影部分空地需鋪設草坪.在甲、乙兩地分別有同種草皮3500米2和25002出售,且售價一樣.若園林公司向甲、乙兩地購買草皮,其路程和運費單價表如下:
求:(1)分別求出圖1、圖2的陰影部分面積;
(2)請你給出一種草皮運送方案,并求出總運費;
(3)請設計總運費最省的草皮運送方案,并說明理由.表如下:
A校B校
路程(千米)運費單價(元) 路程(千米) 運費單價(元)
甲地 20 0.15 10 0.15
乙地 15 0.20 20 0.20
(注:運費單價表示每平方米草皮運送1千米所需的人民幣.)

查看答案和解析>>

同步練習冊答案