【題目】冬天來(lái)了,曬衣服成了頭疼的事情,聰明的小華想到一個(gè)好辦法,在家后院地面(BD)上立兩根等長(zhǎng)的立柱AB、CD(均與地面垂直),并在立柱之間懸掛一根繩子.繩子的形狀近似成了拋物線,如圖1,已知BD=8米,繩子最低點(diǎn)離地面的距離為1米.

(1)求立柱AB的長(zhǎng)度;

(2)由于掛的衣服比較多,為了防止衣服碰到地面,小華用一根垂直于地面的立柱MN撐起繩子(如圖2),MN的長(zhǎng)度為1.85米,通過(guò)調(diào)整MN的位置,使左邊拋物線F1對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)為,頂點(diǎn)離地面1.6米,求MN離AB的距離.

【答案】1AB=2.6;(2MNAB的距離為3.

【解析】試題分析:1)由題意可得拋物線頂點(diǎn)坐標(biāo)為(41),所以拋物線解析式為y=x42+1,要求AB的長(zhǎng)度,令x=0即可,求出函數(shù)值即可;(2首先根據(jù)題意設(shè)出拋物線F1的解析式為y=x+h2+1.6,再將A的坐標(biāo)代入函數(shù)解析式即可求出h,最后令y=1.85,解出x即可求出MNAB的距離.

試題解析:

1)由題意得,拋物線頂點(diǎn)坐標(biāo)為(41),

所以拋物線解析式為:y=x42+1,

x=0y=×16+1=2.6.

所以AB=2.6;

2設(shè)拋物線F1解析式為:y=x+h2+1.6,

A0,2.6),

2.6=h2+1.6,

解得h=±2,正值舍去,

h=2,

F1解析式為:y=x22+1.6,

y=1.851.85=x22+1.6,

解得x1=1(舍去),x2=3,

所以MNAB的距離為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將RtABC繞直角頂點(diǎn)A,沿順時(shí)針?lè)较蛐D(zhuǎn)后得到RtAB1C1,當(dāng)點(diǎn)B1恰好落在斜邊BC的中點(diǎn)時(shí),則∠B1AC=(

A.25°B.30°C.40°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)市民節(jié)約用電,小亮家所在地區(qū)規(guī)定:每戶(hù)居民如果一個(gè)月的用電量不超過(guò)度,那么這戶(hù)居民這個(gè)月只需交元電費(fèi);如果超過(guò)度,則這個(gè)月除了仍要交元的電費(fèi)以外,超過(guò)的部分還要按每度元交電費(fèi).已知小亮家月份用電度,交電費(fèi)元;月份用電度,交電費(fèi)元.

1)請(qǐng)直接寫(xiě)出小亮家月份超過(guò)度部分的用電量(用含的代數(shù)式表示);

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線y=﹣x+3x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C在線段OB上,把△ABC沿直線AC折疊,使點(diǎn)B剛好落在x軸上,則點(diǎn)C的坐標(biāo)是( 。

A.0,﹣B.0,C.0,3D.0,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育文化用品商店購(gòu)進(jìn)籃球和排球共20個(gè),進(jìn)價(jià)和售價(jià)如下表所示,全部銷(xiāo)售完后共獲利潤(rùn)260.

1)購(gòu)進(jìn)籃球和排球各多少個(gè)?

2)銷(xiāo)售6個(gè)排球的利潤(rùn)與銷(xiāo)售幾個(gè)籃球的利潤(rùn)相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于頻率與概率有下列幾種說(shuō)法,其中正確的說(shuō)法是( )

①“明天下雨的概率是90%”表示明天下雨的可能性很大;

②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;

③“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數(shù)的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近;

④“某彩票中獎(jiǎng)的概率是1%”表示買(mǎi)100張?jiān)摲N彩票不可能中獎(jiǎng).

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷(xiāo)售60箱.市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷(xiāo)量將增加10箱,設(shè)每箱牛奶降價(jià)x(x為正整數(shù)),每月的銷(xiāo)量為y箱.

1)寫(xiě)出yx中間的函數(shù)關(guān)系式和自變量的取值范圍;

2)超市如何定價(jià),才能使每月銷(xiāo)售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則CDM周長(zhǎng)的最小值為( 。

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ADBC,垂足為點(diǎn)D,EFBC,垂足為點(diǎn)F,∠1+2=180°.請(qǐng)?zhí)顚?xiě)∠CGD=CAB的理由.

解:因?yàn)?/span>ADBC,EFBC______。

所以∠ADC=90°,∠EFD=90°______。

得∠ADC=EFD(等量代換),

所以ADEF______。

得∠2+3=180°______。

由∠1+2=180°______。

得∠1=3______。

所以DGAB______ )

所以∠CGD=CAB______。

查看答案和解析>>

同步練習(xí)冊(cè)答案