如圖4,點C是線段AB上的一點,點M、N分別是AC、BC的中點.

(1)若AC=10,CB=8,求MN的長;

(2)若AB=a,請猜想MN的長度,并說明理由

 

【答案】

 

(1)9

(2)略

【解析】解:(1)∵M、N分別是AC、BC的中點.

∴AM=MC=AC,CN=BN=CB    ………………1分

∴MN=MC+CN=AC+CB        ………………2分

∵AC=10,CB=8

∴MN=×10+×8=5+4=9    ………………………3分

(2) MN=a                  ………………………4分

由(1)得: MN=MC+CN=AC+CB

∴ MN =(AC+CB)=AB      ……………………5分

∵AB=a

∴MN=AB=a        ……………………………6分

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、(1)如圖1,點O是線段AD的中點,分別以AO和DO為邊在線段AD的同側作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點E,連接BC.求∠AEB的大小;
(2)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(△OAB和△OCD不能重疊),求∠AEB的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明數(shù)學成績優(yōu)秀,他平時善于總結,并把總結出的結果靈活運用到做題中是他成功的經(jīng)驗之一,例如,總結出“依次連接任意一個四邊形各邊中點所得四邊形(即原四邊形的中點四邊形)一定是平行四邊形”后,他想到曾經(jīng)做過的這樣一道題:如圖1,點P是線段AB的中點,分別以AP和BP為邊在線段AB的同側作等邊三角形APC和等邊三角形BPD,連接AD和BC,他想到了四邊形ABDC的中點四邊形一定是菱形.于是,他又進一步探究:
如圖2,若P是線段AB上任一點,在AB的同側作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,設點E,F(xiàn),G,H分別是AC,AB,BD,CD的中點,順次連接E,F(xiàn),G,H.請你接著往下解決三個問題:
(1)猜想四邊形ABCD的中點四邊形EFGH的形狀,直接回答
 
,不必說明理由;
(2)當點P在線段AB的上方時,如圖3,在△APB的外部作△APC和△BPD,其它條件不變,(1)中結論還成立嗎?說明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其它條件不變,先補全圖4,再判斷四邊形EFGH的形狀,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,12)兩點,且對稱軸為直線x=4.設頂點為點P,與x軸的另一交點為點B.
(1)求二次函數(shù)的解析式及頂點P的坐標;
(2)如圖1,在直線 y=2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標;若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒
2
個單位長度的速度由點P向點O 運動,過點M作直線MN∥x軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.求S關于t的函數(shù)關系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,點C是線段AB上一動點,分別以線段AC、CB為邊,在線段AB的同側作正方形ACDE和等腰直角三角形BCF,∠BCF=90°,連接AF、BD.
(1)猜想線段AF與線段BD的數(shù)量關系和位置關系(不用證明).
(2)當點C在線段AB上方時,其它條件不變,如圖2,(1)中的結論是否成立?說明你的理由.
(3)在圖1的條件下,探究:當點C在線段AB上運動到什么位置時,直線AF垂直平分線段BD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•高新區(qū)一模)已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,-12)兩點,且對稱軸為直線x=4,設頂點為點P,與x軸的另一交點為點B.
(1)求二次函數(shù)的解析式及頂點P的坐標;
(2)如圖1,在直線y=-2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標;若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒
2
個單位長度的速度由點P向點O運動,過點M作直線MN∥x軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.問S存在最大值嗎?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案