如圖,AD∥BC,∠A=90°,E是AB上的一點,且AD=BE,∠1=∠2.
(1)△ADE與△BEC全等嗎?請寫出必要的推理過程;
(2)若已知AD=6,AB=14,請求出△CED的面積.
(1)Rt△ADE≌Rt△BEC;
(2)△CED的面積為:50.
解析試題分析:(1)由∠1=∠2,可得DE=CD,根據(jù)證明直角三角形全等的“HL”定理,證明即可;
(2)根據(jù)題意,∠AED+∠ADE=90°,∠BEC+∠BCE=90°,又∠AED=∠BCE,∠ADE=∠BEC,所以,∠AED+∠BEC=90°,即可證得∠DEC=90°,即可得出;再由(1)可得BE=AD,所以可求出AE,根據(jù)勾股定理可求出DE,再由已知∠1=∠2,從而求出△CED的面積.
考點:直角梯形;三角形的面積;全等三角形的判定與性質(zhì);直角三角形的性質(zhì).
點評:證明三角形全等時,關鍵是根據(jù)題意選取適當?shù)臈l件.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com