【題目】已知:如圖,在平行四邊形中,G、H分別是、的中點,E、O、F分別是對角線上的四等分點,順次連接G、E、H、F.
(1)求證:四邊形是平行四邊形;
(2)當平行四邊形滿足_______條件時,四邊形是菱形;
(3)若,探究四邊形的形狀,并說明理由.
【答案】(1)見解析;(2);(3)四邊形是矩形,理由見解析
【解析】
(1)連接AC,由平行四邊形的性質(zhì)和已知條件得出E、F分別為OB、OD的中點,證出GF為△AOD的中位線,由三角形中位線定理得出GF∥OA,GF=OA,同理:EH∥OC,EH=OC,得出EH=GF,EH∥GF,即可得出結(jié)論;
(2)連接GH,證出四邊形ABHG是平行四邊形,再證明GH⊥EF,即可得出平行四邊形GEHF是菱形;
(3)由(2)得:四邊形ABHG是平行四邊形,得出GH=AB,證出GH=EF,即可得出四邊形GEHF是矩形.
解:(1)連接AC,
∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∴BD的中點在AC上,
∵E、O、F分別是對角線BD上的四等分點,
∴E、F分別為OB、OD的中點,
∵G是AD的中點,
∴GF為△AOD的中位線,
∴GF∥OA,GF=OA,
同理:EH∥OC,EH=OC,
∴EH=GF,EH∥GF,
∴四邊形GEHF是平行四邊形;
(2)當ABCD滿足AB⊥BD條件時,四邊形GEHF是菱形;
理由:連接GH,
則AG=BH,AG∥BH,
∴四邊形ABHG是平行四邊形,
∴AB∥GH,
∵AB⊥BD,
∴GH⊥BD,
∴GH⊥EF,
∴平行四邊形GEHF是菱形,
故答案為:AB⊥BD;
(3)四邊形GEHF是矩形;
理由:由(2)得,四邊形ABHG是平行四邊形,
∴GH=AB,
∵BD=2AB,
∴AB=BD=EF,
∴GH=EF,
∴四邊形GEHF是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線,經(jīng)過點.
(1)求的值;
(2)過作軸,垂足為,點是雙曲線的一點,連接,,若的面積為12,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=﹣1,且拋物線經(jīng)過 A(1,0),C(0,3)兩點,與x軸交于點B.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求此時點M的坐標;
(3)設(shè)點P為拋物線對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y1=kx+n(n<0)和反比例函數(shù)y2=(m>0,x>0).
(1)如圖1,若n=﹣2,且兩個函數(shù)的圖象都經(jīng)過點A(3,4).
①求m、k的值;
②直接寫出當y1>y2時x的范圍: ;
(2)如圖2,過點P(1,0)作y軸的平行線l與函數(shù)y2的圖象相交于點B、與反比例函數(shù)y3=(x>0)的圖象相交于點C.
①若k=2,直線l與函數(shù),的圖象相交點D.當點B、C、D中的一點到另外兩點的距離相等時,求m﹣n的值;
②過點B作x軸的平行線與函數(shù)y1的圖象相交與點E.當m﹣n的值取不大于1的任意實數(shù)時,點B、C間的距離與點B、E間的距離之和d始終是一個定值.求此時k的值及定值d.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點D和E,作直線DE交AB于點F,交AC于點G,連接CF,以點C為圓心,以CF的長為半徑畫弧,交AC于點H.若∠A=30°,BC=2,則AH的長是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)
與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當x>1時,y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AC、AB的中點,CF∥AB交ED的延長線于點F,連接AF、CE.
(1)求證:四邊形BCEF是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形AECF是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com