如果△ABC的三個(gè)外角之比是2:3:4,那么這個(gè)三角形的三個(gè)內(nèi)角的比是________.

5:3:1
分析:首先根據(jù)外角之比設(shè)出三個(gè)外角分別是2x°,3x°,4x°,再根據(jù)三角形的外角和是360°可列出方程,解方程可得三個(gè)外角的度數(shù),再根據(jù)鄰補(bǔ)角關(guān)系求出三個(gè)內(nèi)角的度數(shù),進(jìn)而可求出三個(gè)內(nèi)角的比.
解答:解;設(shè)△ABC的三個(gè)外角分別是2x°,3x°,4x°,
∴2x+3x+4x=360,
解得x=40,
∴三個(gè)外角分別是:80°,120°,160°,
則三個(gè)內(nèi)角分別是:100°,60°,20°,
三個(gè)內(nèi)角的比是:100:60:20=5:3:1.
故答案為:5:3:1.
點(diǎn)評(píng):此題主要考查了三角形的外角和定理,解決此題的關(guān)鍵是根據(jù)外角之比設(shè)出未知數(shù),列出方程求出外角的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點(diǎn)共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點(diǎn)E,F(xiàn)分別在線段AC,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個(gè)頂點(diǎn)距離相等),試證明C,E,O,F(xiàn)四點(diǎn)共圓.(注:可以使用上述定理,也可以采用其他方法)
精英家教網(wǎng)
如果將問題2中的點(diǎn)C“分離”成兩個(gè)點(diǎn),那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且DE=BF,直線AC,BD相交于點(diǎn)P,直線EF,BD相交于點(diǎn)Q,直線EF,AC相交于點(diǎn)R.當(dāng)點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合)時(shí),探究△PQR的外接圓是否經(jīng)過除點(diǎn)P外的另一個(gè)定點(diǎn)?如果是,請(qǐng)給出證明,并指出是哪個(gè)定點(diǎn);如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點(diǎn)共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點(diǎn)E,F(xiàn)分別在線段AC,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個(gè)頂點(diǎn)距離相等),試證明C,E,O,F(xiàn)四點(diǎn)共圓.(注:可以使用上述定理,也可以采用其他方法)

如果將問題2中的點(diǎn)C“分離”成兩個(gè)點(diǎn),那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且DE=BF,直線AC,BD相交于點(diǎn)P,直線EF,BD相交于點(diǎn)Q,直線EF,AC相交于點(diǎn)R.當(dāng)點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合)時(shí),探究△PQR的外接圓是否經(jīng)過除點(diǎn)P外的另一個(gè)定點(diǎn)?如果是,請(qǐng)給出證明,并指出是哪個(gè)定點(diǎn);如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點(diǎn)共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點(diǎn)E,F(xiàn)分別在線段AC,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個(gè)頂點(diǎn)距離相等),試證明C,E,O,F(xiàn)四點(diǎn)共圓.(注:可以使用上述定理,也可以采用其他方法)

精英家教網(wǎng)

如果將問題2中的點(diǎn)C“分離”成兩個(gè)點(diǎn),那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且DE=BF,直線AC,BD相交于點(diǎn)P,直線EF,BD相交于點(diǎn)Q,直線EF,AC相交于點(diǎn)R.當(dāng)點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合)時(shí),探究△PQR的外接圓是否經(jīng)過除點(diǎn)P外的另一個(gè)定點(diǎn)?如果是,請(qǐng)給出證明,并指出是哪個(gè)定點(diǎn);如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年第4屆“銳豐杯”初中數(shù)學(xué)邀請(qǐng)賽試卷(解析版) 題型:解答題

定理:圖1,如果∠ADB=∠ACB,那么四邊形ABCD有外接圓,也叫做A,B,C,D四點(diǎn)共圓.(注:本定理不需要證明)
(1)圖2,△ABC中,AC=BC,點(diǎn)E,F(xiàn)分別在線段AC,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且CE=BF,O是△ABC的外心(外接圓的圓心,它到三角形三個(gè)頂點(diǎn)距離相等),試證明C,E,O,F(xiàn)四點(diǎn)共圓.(注:可以使用上述定理,也可以采用其他方法)

如果將問題2中的點(diǎn)C“分離”成兩個(gè)點(diǎn),那么就有:
(2)圖3,在凸四邊形ABCD中,AD=BC,點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合),而且DE=BF,直線AC,BD相交于點(diǎn)P,直線EF,BD相交于點(diǎn)Q,直線EF,AC相交于點(diǎn)R.當(dāng)點(diǎn)E,F(xiàn)分別在線段AD,BC上運(yùn)動(dòng)(不與端點(diǎn)重合)時(shí),探究△PQR的外接圓是否經(jīng)過除點(diǎn)P外的另一個(gè)定點(diǎn)?如果是,請(qǐng)給出證明,并指出是哪個(gè)定點(diǎn);如果不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案