【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣x+b與拋物線的另一個交點為D.

(1)若點D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;

(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標(biāo);

(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運(yùn)動到點E,再沿線段ED以每秒個單位的速度運(yùn)動到點D后停止,問當(dāng)點E的坐標(biāo)是多少時,點Q在整個運(yùn)動過程中所用時間最少?

【答案】(1) y=﹣x2﹣2x+3(2) P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);(3) (1,﹣4).

【解析】

試題分析:(1)根據(jù)二次函數(shù)的交點式確定點A、B的坐標(biāo),求出直線的解析式,求出點D的坐標(biāo),求出拋物線的解析式;(2)作PH⊥x軸于H,設(shè)點P的坐標(biāo)為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)相似三角形的性質(zhì)計算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據(jù)正切的定義求出Q的運(yùn)動時間t=BE+EF時,t最小即可.

試題解析:(1)∵y=a(x+3)(x﹣1),

∴點A的坐標(biāo)為(﹣3,0)、點B兩的坐標(biāo)為(1,0),

∵直線y=﹣x+b經(jīng)過點A,

∴b=﹣3,

∴y=﹣x﹣3,

當(dāng)x=2時,y=﹣5

則點D的坐標(biāo)為(2,﹣5),

∵點D在拋物線上,

∴a(2+3)(2﹣1)=﹣5,

解得,a=﹣,

則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;

(2)作PH⊥x軸于H,

設(shè)點P的坐標(biāo)為(m,n),

當(dāng)△BPA∽△ABC時,∠BAC=∠PBA,

∴tan∠BAC=tan∠PBA,即=,

=,即n=﹣a(m﹣1),

,

解得,m1=﹣4,m2=1(不合題意,舍去),

當(dāng)m=﹣4時,n=5a,

∵△BPA∽△ABC,

=,即AB2=ACPB,

∴42=,

解得,a1=(不合題意,舍去),a2=﹣,

則n=5a=﹣,

∴點P的坐標(biāo)為(﹣4,﹣);

當(dāng)△PBA∽△ABC時,∠CBA=∠PBA,

∴tan∠CBA=tan∠PBA,即=,

=,即n=﹣3a(m﹣1),

解得,m1=﹣6,m2=1(不合題意,舍去),

當(dāng)m=﹣6時,n=21a,

∵△PBA∽△ABC,

=,即AB2=BCPB,

∴42=,

解得,a1=(不合題意,舍去),a2=﹣,

則點P的坐標(biāo)為(﹣6,﹣),

綜上所述,符合條件的點P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);

(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,

則tan∠DAN===,

∴∠DAN=60°,

∴∠EDF=60°,

∴DE==EF,

∴Q的運(yùn)動時間t=+=BE+EF,

∴當(dāng)BE和EF共線時,t最小,

則BE⊥DM,E(1,﹣4)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x1 , x2是一元二次方程x2﹣3x﹣4=0的兩根,則x1+x2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關(guān)系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與時間x(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時的水庫總蓄水量.

(2)求當(dāng)0≤x≤60時,水庫的總蓄水量y(萬m3)與時間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅去超市買了2瓶單價為m元的飲料和3個單價為n元的面包,共需_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年國慶節(jié)期間,南寧動物園在7天假期中每天接待游客的人數(shù)與前一天相比的變化情況(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))如下表:

日期

1日

2日

3日

4日

5日

6日

7日

人數(shù)變化/萬人

+1.7

+0.6

+0.3

-0.3

-0.6

+0.2

-1.1

(1) 請判斷七天內(nèi)游客人數(shù)最多的是哪天?最少的是哪天?它們相差多少萬人?

(2) 若9月30日的游客人數(shù)為3萬人,求這7天的游客總?cè)藬?shù)是多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形具有而一般平行四邊形不一定具有的性質(zhì)是(

A. 對角線相等 B. 對角相等 C. 對角線互相平分 D. 對邊相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】mn,下列不等式不一定成立的是( )

A. m+2n+2 B. 2m2n C. D. m2n2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:ab2﹣4ab+4a=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東濰坊第23題)旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運(yùn)規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.

(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費(fèi))

(2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?

查看答案和解析>>

同步練習(xí)冊答案