如圖,AB是半圓⊙O的直徑,弦CD∥AB,∠CAD=30°,若AB=6,則陰影部分的面積是     (結果中保留π).
【答案】分析:連接OC,OD,判斷出陰影部分的面積=扇形OCD的面積,根據(jù)扇形的面積公式即可求解.
解答:解:連接OC,OD,

∵∠CAD=30°,
∴∠COD=60°,
∵AB∥CD,
∴△ACD的面積=△COD的面積,
∴陰影部分的面積=弓形CD的面積+△COD的面積=扇形OCD的面積==π.
故答案為:π.
點評:本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,∠BAC=30°,BC為半圓的切線,切點為B,且BC=4\sqrt{3}.
(1)求圓心O到AC的距離;
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC=AD,OC=2,∠CAB=30°,則點O到CD的距離OE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,點C是⊙O上一點(不與A,B重合),連接AC,BC,過點O作OD∥精英家教網(wǎng)AC交BC于點D,在OD的延長線上取一點E,連接EB,使∠OEB=∠ABC.
(1)求證:BE是⊙O的切線;
(2)若OA=10,BC=16,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江)如圖,AB是半圓O的直徑,點P在AB的延長線上,PC切半圓O于點C,連接AC.若∠CPA=20°,則∠A=
35
35
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2001•東城區(qū))已知:如圖,AB是半圓O的直徑,C為AB上一點,AC為半圓O′的直徑,BD切半圓O′于點D,CE⊥AB交半圓O于點F.
(1)求證:BD=BE;
(2)若兩圓半徑的比為3:2,試判斷∠EBD是直角、銳角還是鈍角?并給出證明.

查看答案和解析>>

同步練習冊答案