如圖,在△ABC中,∠B=∠C=60°,點(diǎn)D、E分別在邊AB、BC上,將△BDE沿直線DE翻折,使點(diǎn)B落在B1處,DB1、EB1分別交邊AC于點(diǎn)F、G.若∠ADF=80°,則∠GEC=
40
40
°.
分析:由對(duì)頂角相等可得∠CGE=∠FGB′,由兩角對(duì)應(yīng)相等可得△ADF∽△B′GF,那么∠CGE=∠ADF的度數(shù),則∠GEC=180°-∠C-∠CGE.
解答:解:在△ABC中,∠B=∠C=60°,
由翻折可得∠B′=∠B=60°,
∴∠A=∠B′=60°,
∵∠AFD=∠GFB′,
∴△ADF∽△B′GF,
∴∠ADF=∠B′GF,
∵∠EGC=∠FGB′,
∴∠EGC=∠ADF=80°,
∴∠GEC=180°-∠C-∠CGE=180°-60°-80°=40°.
故答案為:40°.
點(diǎn)評(píng):本題考查了翻折變換問題,得到所求角與所給角的度數(shù)的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案