如圖,PA為⊙O的切線,A為切點(diǎn),PO交⊙O于點(diǎn)B,若sin∠APO=數(shù)學(xué)公式,則tan∠AOP=________.


分析:由于PA是⊙O的切線,由切線的性質(zhì)知:∠PAO=90°,根據(jù)∠APO的正弦值,可用未知數(shù)表示出AO、OP的長(zhǎng),進(jìn)而可由勾股定理求得AP的表達(dá)式,即可求得∠AOP的正切值.
解答:∵PA切⊙O于A,
∴∠PAO=90°.
設(shè)OA=R,則OP=3R.
由勾股定理得:AP==2a.
∴tan∠AOP==2
點(diǎn)評(píng):此題主要考查了切線的性質(zhì)以及銳角三角函數(shù)的定義,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,PA、PB分別切⊙O于點(diǎn)A、B,點(diǎn)E是⊙O上一點(diǎn),且∠AEB=60°,則∠P的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,PA、PB分別切⊙O于A、B兩點(diǎn),如果∠P=60°,PA=2,那么AB的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,PA、PB分別切⊙O于點(diǎn)A、B,M是劣弧AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),過M作⊙O的切線分別交PA、PB于點(diǎn)C、D.設(shè)CM的長(zhǎng)為x,△PCD的周長(zhǎng)為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•莆田質(zhì)檢)如圖,PA、PB分別切⊙O于A、B兩點(diǎn),點(diǎn)C在優(yōu)弧
ACB
上,∠P=80°,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,PA,PB分別切⊙O于點(diǎn)A和點(diǎn)B,C是
AB
上任一點(diǎn),過C的切線分別交PA,PB于D,E.若⊙O的半徑為6,PO=10,則△PDE的周長(zhǎng)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案