如圖所示,在平行四邊形ABCD中,AC與BD相交于點O,AB⊥AC,∠DAC=45°,AC=2,求BD的長.

【答案】分析:根據(jù)已知條件得到等腰直角三角形ABC,則AB=AC=2,又根據(jù)平行四邊形的對角線互相平分,得到OA=1,根據(jù)勾股定理就可求得OB的長,再根據(jù)平行四邊形的對角線互相平分,就可求得BD的長.
解答:解:∵四邊形ABCD是平行四邊形,∠DAC=45°,
∴∠ACB=∠DAC=45°,OA=AC=1,
∵AB⊥AC,
∴△ABC是等腰直角三角形,
∴AB=AC=2,
在Rt△AOB中,根據(jù)勾股定理得OB=
∴BD=2BO=2
點評:此題要求學生熟練運用等腰直角三角形的性質和勾股定理;熟悉平行四邊形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中AB=12,AC=20,兩條對角線相交于點O.以OB、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點O1;再以O1B1,O1C1為鄰邊作第3個平行四邊形O1B1B2C1;…以此類推.
(1)矩形ABCD的面積為
192
192

(2)第1個平行四邊行OBB1C的面積為
96
96
;
第2個平行四邊形A1B1C1C的面積為
48
48

(3)第n個平行四邊形的面積為
192×(
1
2
)n
(或
192
2n
192×(
1
2
)n
(或
192
2n

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:022

如圖所示,在平行四邊行ABCD中,AD=3,∠DAB=60°,B點坐標為(3,0).則A、D、C三點的坐標分別為A________、D________、C________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,在矩形ABCD中AB=12,AC=20,兩條對角線相交于點O.以OB、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點O1;再以O1B1,O1C1為鄰邊作第3個平行四邊形O1B1B2C1;…以此類推.
(1)矩形ABCD的面積為______;
(2)第1個平行四邊行OBB1C的面積為______;
第2個平行四邊形A1B1C1C的面積為______;
(3)第n個平行四邊形的面積為______.

查看答案和解析>>

同步練習冊答案