【題目】商場(chǎng)銷(xiāo)售某種冰箱,該種冰箱每臺(tái)進(jìn)價(jià)為2500元.已知原銷(xiāo)售價(jià)為每臺(tái)2900元時(shí),平均每天能售出8臺(tái).若在原銷(xiāo)售價(jià)的基礎(chǔ)上每臺(tái)降價(jià)50元,則平均每天可多售出4臺(tái).設(shè)每臺(tái)冰箱的實(shí)際售價(jià)比原銷(xiāo)售價(jià)降低了x元.
(1)填表(不需化簡(jiǎn)):
每天的銷(xiāo)售量/臺(tái) | 每臺(tái)銷(xiāo)售利潤(rùn)/元 | |
降價(jià)前 | 8 | 400 |
降價(jià)后 |
(2)商場(chǎng)為使這種冰箱平均每天的銷(xiāo)售利潤(rùn)達(dá)到5000元,則每臺(tái)冰箱的實(shí)際售價(jià)應(yīng)定為多少元?
【答案】(1), ;(2)2750.
【解析】試題分析:(1)設(shè)每臺(tái)冰箱的實(shí)際售價(jià)比原銷(xiāo)售價(jià)降低了x元,根據(jù)在原銷(xiāo)售價(jià)的基礎(chǔ)上每臺(tái)降價(jià)50元,則平均每天可多售出4臺(tái)得出結(jié)果,填表即可;
(2)根據(jù)利潤(rùn)=售價(jià)-進(jìn)價(jià)列出方程,求出方程的解即可得到結(jié)果.
試題解析:(1)填表如下:
每天的銷(xiāo)售量/臺(tái) | 每臺(tái)銷(xiāo)售利潤(rùn)/元 | |
降價(jià)前 | 8 | 400 |
降價(jià)后 |
(2)根據(jù)題意,可得:,
化簡(jiǎn),整理得:,
即,
解得:x=150.
∴實(shí)際售價(jià)定為:2900-150=2750(元) .
答:每臺(tái)冰箱的實(shí)際售價(jià)應(yīng)定為2750元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】感知:如圖①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的頂點(diǎn)D、F分別在邊AC、BC上,易證:AD=BF(不需要證明);
探究:將圖①的正方形CDEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),連接AD、BF,其他條件不變,如圖②,求證:AD=BF;
應(yīng)用:若α=45°,CD=,BE=1,如圖③,則BF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點(diǎn)P是線段AB上的動(dòng)點(diǎn)(不與A、B重合),過(guò)點(diǎn)P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點(diǎn)C.
(1)求a、b的值及B點(diǎn)的坐標(biāo);
(2)求線段PC長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);
(2)若OF平分∠COE,∠BOF=15°,求∠AOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點(diǎn)D,DE⊥AB,垂足為E。若DE=1,則BC的長(zhǎng)為( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,得到A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)直接寫(xiě)出點(diǎn)C,D的坐標(biāo),求出四邊形ABDC的面積;
(2)在x軸上是否存在一點(diǎn)F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn),,分別在邊,,上,且,,連結(jié),,,
(1)求證:.
(2)判斷的形狀,并說(shuō)明理由.
(3)若,當(dāng)_______時(shí),.請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地電話撥號(hào)入網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一.
計(jì)時(shí)制:0.05元/分;
包月制:50元/月(限一部個(gè)人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費(fèi)0.02元/分.
(1)某用戶某月上網(wǎng)的時(shí)間為x小時(shí),請(qǐng)你分別寫(xiě)出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用.
(2)若某用戶估計(jì)一個(gè)月內(nèi)上網(wǎng)的時(shí)間為20小時(shí),你認(rèn)為采用哪種方式較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課堂上,數(shù)學(xué)老師提出了如下問(wèn)題:
如圖1,若線段AD為△ABC的角平分線,請(qǐng)問(wèn)一定成立嗎?
小明和小芳分別作了如下探究:
小明發(fā)現(xiàn):如圖2,當(dāng)△ABC為直角三角形時(shí),且∠C=90°,∠CAB=60°時(shí),結(jié)論成立;
小芳發(fā)現(xiàn):如圖3,當(dāng)△ABC為任意三角形時(shí),過(guò)點(diǎn)C作AB的平行線,交AD的延長(zhǎng)線于點(diǎn)E,利用此圖可以證明成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com