把下列各式分解因式:
①-a3+10a2-25a;  
②4a(x-y)-2b(y-x);
③(a2+b22-4a2b2;  
④(t+1)(t+2)-20.

解:①原式=-a(a2-10a+25)=-a(a-5)2;

②原式=4a(x-y)+2b(x-y)=2(x-y)(2a+b);

③原式=(a2+b2+2ab)(a2+b2-2ab)=(a+b)2(a-b)2;

④原式=t2+3t+2-20=t2+3t-18=(t+6)(t-3).
分析:①首先提取公因式-a,再利用完全平方公式進行二次分解即可;
②首先把式子變形為4a(x-y)+2b(x-y),再提取公因式2(x-y)即可;
③首先利用平方差公式進行分解,再利用完全平方公式進行分解即可;
④首先利用整式的乘法進行計算,再利用十字相乘法分解.
點評:本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、把下列各式分解因式:
(1)a4+64b4;
(2)x4+x2y2+y4
(3)x2+(1+x)2+(x+x22;
(4)(c-a)2-4(b-c)(a-b);
(5)x3-9x+8;
(6)x3+2x2-5x-6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式:
(1)x3-x;              
(2)a3-2a2b+ab2;    
(3)3a2b-6ab2;
(4)-6a3+15ab2-9ac2
(5)a(x-y)-x+y;    
(6)x2+4y2-4xy;
(7)x2(a-b)+4(b-a);     
(8)(x2+4)2-16x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式.
(1)a3-a
(2)3x4-12x2
(3)9(x-y)2-4(x+y)2
(4)a2-49b2
(5)16x2y2z2-9
(6)x2y2-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式.
(1)a2-1=
(a+1)(a-1)
(a+1)(a-1)

(2)a4-1=
(a2+1)(a+1)(a-1)
(a2+1)(a+1)(a-1)

(3)x2-2xy+y2=
(x-y)2
(x-y)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把下列各式分解因式:
(1)x6-81x2y4         
(2)2x2-x-3        
(3)x2-7x-8  (4)a3-2a2+a     
(5)a2+6a+5     (6)7x2+13x-2
(7)-x2+4x+5       (8)-3x2+10x+8    
(9)x3z-4x2yz+4xy2z (10)x3z-4x2yz+4xy2z              
(11)x4+6x2+9  (12)(x-1)2-4(x-1)y+4y2           
(13)(x2-10)(x2+5)+54 (14)(a-b)(x-y)-(b-a)(x+y)       
(15)4m5+8m3n2+4mn4 (16)4a2+4ab+b2-1            
(17)x3-x2-2x+2.

查看答案和解析>>

同步練習冊答案