【題目】菱形ABCD中,對角線AC、BD交于點O,且AC=2BD,以AD為斜邊在菱形ABCD同側作Rt△ADE.
(1)如圖1,當點E落在邊AB上時.
①求證:∠BDE=∠BAO;
②求 的值;
③當AF=6時,求DF的長.
(2)如圖2,當點E落在菱形ABCD內部,且AE=DE時,猜想OE與OB的數量關系并證明.
【答案】
(1)
解:①∵四邊形ABCD是菱形,
∴AC⊥BD,又△ADE是直角三角形,
∴∠AEF=∠DOF=90°,
∴∠BDE+∠DFO=∠BAO+∠AFE,
∵∠AFE=∠DFO,
∴∠BDE=∠BAO;
②∵AC=2BD,
∴AO=2OB,
∴tan∠BAO= = ,
∴tan∠ODF= = ,
∴ =2;
③設OF=x,則OD=2x,AO=4x,
∵AF=6,
∴4x﹣x=6,
∴x=2,即OF=2,DO=4,
由勾股定理得,DF= =2
(2)
解:OB= OE.
理由如下:如圖2,連結BE,
在△AEO和△DEB中,
,
∴△AEO≌△DEB,
∴EO=EB,∠AEO=∠DEB,
∴∠AEO﹣∠DEO=∠DEB﹣∠DEO,即∠OEB=∠AED=90°,
∴OB= OE.
【解析】(1)①根據菱形的性質和對頂角相等證明即可;②根據∠BAO=∠ODF以及正切的概念計算;③設OF=x,根據題意用x表示出OD、AO,根據題意求出x的值,根據勾股定理計算即可;(2)連結BE,證明△AEO≌△DEB,得到△OEB為等腰直角三角形,即可解答.
【考點精析】利用勾股定理的概念對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數m進行分組統(tǒng)計,結果如表所示:
組號 | 分組 | 頻數 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形圖來描述,求分數在8≤m<9內所對應的扇形圖的圓心角大小;
(3)將在第一組內的兩名選手記為:A1、A2 , 在第四組內的兩名選手記為:B1、B2 , 從第一組和第四組中隨機選取2名選手進行調研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知平面直角坐標系內,A(﹣1,0),B(3,0),點D是線段AB上任意一點(點D不與A,B重合),過點D作AB的垂線l.點C是l上一點,且∠ACB是銳角,連結AC,BC,作AE⊥BC于點E,交CD于點H,連結BH,設△ABC面積為S1 , △ABH面積為S2 , 則S1S2的最大值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數學問題,如圖2.已知鐵環(huán)的半徑為25cm,設鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα= .
(1)求點M離地面AC的高度BM;
(2)設人站立點C與點A的水平距離AC=55cm,求鐵環(huán)鉤MF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉盤平均分成四個扇形,分別標上1,2,3,4四個數字,抽獎者連續(xù)轉動轉盤兩次,當每次轉盤停止后指針所指扇形內的數為每次所得的數(若指針指在分界線時重轉);當兩次所得數字之和為8時,返現金20元;當兩次所得數字之和為7時,返現金15元;當兩次所得數字之和為6時返現金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現的結果;
(2)某顧客參加一次抽獎,能獲得返還現金的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,橫坐標,縱坐標都為整數的點稱為整點,正方形邊長的整點稱為邊整點,如圖,第一個正方形有4個邊整點,第二個正方形有8個邊整點,第三個正方形有12個邊整點,…,按此規(guī)律繼續(xù)作下去,若從內向外共作了5個這樣的正方形,那么其邊整點的個數共有個,這些邊整點落在函數y= 的圖象上的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉45°后得到正方形AB1C1D1 , 邊B1C1與CD交于點O,則四邊形AB1OD的面積是( )
A.
B.
C.
D. ﹣1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com