如圖,正方形ABCD的邊長(zhǎng)為1,E是邊CD上的一點(diǎn),F(xiàn)是邊CB延長(zhǎng)線上的一點(diǎn),如果△ADE∽△FCE∽△ABF,且∠DAE、∠CFE、∠BAF是對(duì)應(yīng)角.求DE的長(zhǎng).
分析:首先由正方形ABCD的邊長(zhǎng)為1,△ADE∽△ABF,證得BF=DE,然后設(shè)DE=x,可得BF=x,CE=CD-DE=1-x,CF=BC+BF=1+x,又由△ADE∽△FCE,可得
AD
FC
=
DE
CE
,即可得方程
1
1+x
=
x
1-x
,解此方程即可求得答案.
解答:解:∵正方形ABCD的邊長(zhǎng)為1,
∴AD=AB=BC=CD=1,
∵△ADE∽△ABF,
DE
BF
=
AD
AB
,
∴DE=BF,
設(shè)DE=x,
則BF=x,CE=CD-DE=1-x,CF=BC+BF=1+x,
∵△ADE∽△FCE,
AD
FC
=
DE
CE
,
1
1+x
=
x
1-x
,
解得:x1=
2
-1,x2=-
2
-1(舍去),
∴DE=
2
-1.
點(diǎn)評(píng):此題考查了相似三角形的性質(zhì)、正方形的性質(zhì)以及一元二次方程的解法.此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案