【題目】閱讀下列材料:小明為了計算1+2+22+……+22018+22019的值,采用以下方法:

設(shè)S=1+2+22+……+22018+22019

2S=2+22+……+22019+22020

-①得,2S-S=S=22020-1

請仿照小明的方法解決以下問題:

11+2+22+……+29=

23+32+……+310=;

3)求1+a+a2+……+an的和(a0n是正整數(shù),請寫出計算過程).

【答案】1S=210-1;(2;(3,見解析

【解析】

1)利用題中的方法設(shè)S=1+2+22+…+29,兩邊乘以2得到2S=2+22+…+210,然后把兩式相減計算出S即可;
2)利用題中的方法設(shè)S=3+32+33+34+…+310,兩邊乘以3得到3S=3+32+33+34+35+…+311,然后把兩式相減計算出S即可;
3)利用(2)的方法計算.

解:(1

S=1+2+22+……+29①,則2S=2+22+……+210②,②-①得,2S-S=S=2101,即S=210-1

故答案為:2101.

2

S=3+32+……+310,①則3S=32+33+……+311,②

-①得,3SS=2S=3113,

S=

故答案為:

3)令S=1+a+a2+……+an,①則aS=a+a2+……+an+1,②

-①得,aSS=(a1)S=an+11

S=.即1+a+a2+……+an=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅駕車從甲地到乙地,她出發(fā)第xh時距離乙地ykm,已知小紅駕車中途休息了1小時,圖中的折線表示她在整個駕車過程中yx之間的函數(shù)關(guān)系.

1B點的坐標(biāo)為(    );

2)求線段AB所表示的yx之間的函數(shù)表達(dá)式;

3)小紅休息結(jié)束后,以60km/h的速度行駛,則點D表示的實際意義是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B⊙O的切線交直線AC于點D,點ECH的中點,連接AE并延長交BD于點F,直線CFAB的延長線于G.

(1)求證:AEFD=AFEC;

(2)求證:FC=FB;

(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強騎自行車去郊游,右圖表示他離家的距離y(千米)與所用的時間x(小時)之間關(guān)系的函數(shù)圖象,小強9點離開家,15點回家,根據(jù)這個圖象,請你回答下列問題:

1)小強到離家最遠(yuǎn)的地方需要幾小時?此時離家多遠(yuǎn)?

2)何時開始第一次休息?休息時間多長?

3)小強何時距家21km?(寫出計算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,AB=BC,DEAB于點E,DFBC于點D,交ACF.

若∠AFD=155°,求∠EDF的度數(shù);

若點FAC的中點,求證:∠CFD=B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx(k0)沿著y軸向上平移3個單位長度后,與x軸交于點B(3,0),與y軸交于點C,拋物線y=x2+bx+c過點B、C且與x軸的另一個交點為A.

(1)求直線BC及該拋物線的表達(dá)式;

(2)設(shè)該拋物線的頂點為D,求△DBC的面積;

(3)如果點Fy軸上,且∠CDF=45°,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)

過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)BDM為直角三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax2+bx+c的圖像如圖所示,那么關(guān)于x的方程ax2+bx+c-4=0的根的情況是( )

A.有兩個不相等的實數(shù)根 B.有兩個異號的實數(shù)根

C.有兩個相等的實數(shù)根 D.沒有實數(shù)根

查看答案和解析>>

同步練習(xí)冊答案