精英家教網 > 初中數學 > 題目詳情
如圖,PA、PB是⊙O的兩條切線,切點是A、B,如果OP=4,∠APB=60°,那么⊙O的半徑是   
【答案】分析:根據切線的性質求得∠APO=30°,∠PAO=90°,再由直角三角形的性質得AO=2.
解答:解:∵PA、PB是⊙O的兩條切線,
∴∠APO=∠BPO=∠APB,∠PAO=90°,
∵∠APB=60°,
∴∠APO=30°,
∵PO=4,
∴AO=2.
故答案為:2.
點評:本題考查了切線長定理、切線的性質和直角三角形的性質,是基礎知識要熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,PA,PB是⊙O的切線,切點分別為A,B,且∠APB=50°,點C是優(yōu)弧
AB
上的一點,則∠ACB的度數為
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.
(1)求∠APB的度數;
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據圓的對稱性,寫出△PAB的三個正確的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點分別是A、B,點C是⊙O上異與點A、B的點,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習冊答案