你知道嗎?平時我們在跳繩時,繩甩到最高處的形狀可近似地看為拋物線,如圖,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距離為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處,繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高1.5m,則學(xué)生丁的身高為________m(建立的平面直角坐標(biāo)系如圖所示).


分析:因?yàn)閳D象過(-1,1),(0,1.5),(3,1)三點(diǎn),用待定系數(shù)法可求出拋物線解析式.然后令x=1.5時,求y的值即可解答.
解答:設(shè)所求的函數(shù)的解析式為y=ax2+bx+c,
由已知,函數(shù)的圖象過(-1,1),(0,1.5),(3,1)三點(diǎn),
易求其解析式為y=-x2+x+,
∵丁頭頂?shù)臋M坐標(biāo)為1.5,
∴代入其解析式可求得其縱坐標(biāo)為m.
點(diǎn)評:本題考查點(diǎn)的坐標(biāo)的求法及二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( 。
A、1.5mB、1.625mC、1.66mD、1.67m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)你知道嗎?平時我們在跳繩時,繩甩到最高處的形狀可近似地看為拋物線,如圖,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距離為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處,繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高1.5m,則學(xué)生丁的身高為
 
m(建立的平面直角坐標(biāo)系如圖所示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(14):2.6 何時獲得最大利潤(解析版) 題型:選擇題

你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( )

A.1.5m
B.1.625m
C.1.66m
D.1.67m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:選擇題

(2004•濟(jì)南)你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( )

A.1.5m
B.1.625m
C.1.66m
D.1.67m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•濟(jì)南)你知道嗎?平時我們在跳大繩時,繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5m處.繩子在甩到最高處時剛好通過他們的頭頂.已知學(xué)生丙的身高是1.5m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如圖所示)( )

A.1.5m
B.1.625m
C.1.66m
D.1.67m

查看答案和解析>>

同步練習(xí)冊答案