已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正確結論的個數(shù)為( )

A.4個
B.3個
C.2個
D.1個
【答案】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解答:解:①由拋物線的開口方向向下可推出a<0,
因為對稱軸在y軸右側,對稱軸為x=>0,
而a<0,所以b>0,
由拋物線與y軸的交點在y軸的正半軸上,可知c>0,故abc<0,錯誤;
②由圖象可知:對稱軸x=>0且對稱軸x=<1,所以2a+b<0,正確;
③由圖象可知:當x=-1時,y>0
∴a-b+c<0,錯誤;
④當x=-1時,y>0,∴a-b+c>0,a+c>b,而b>0,所以a+c>0,故正確.
綜上可得:②④正確.
故選C.
點評:考查二次函數(shù)y=ax2+bx+c系數(shù)符號的確定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數(shù)學試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案