【題目】成都市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).

請你根據(jù)圖中提供的信息,回答下列問題:

(1)扇形統(tǒng)計圖中a=   ,該校初一學(xué)生總?cè)藬?shù)為   人;

(2)根據(jù)圖中信息,補全條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中活動時間為4的扇形所對圓心角的度數(shù)為   

(4)如果該市共有初一學(xué)生6000人,請你估計活動時間不少于4的大約有   人.

【答案】(1)200人;(2)見解析;(3)108°;(4)4500人.

【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用活動時間為2天的人數(shù)除以它所占的百分比,即可求出該校初一學(xué)生總?cè)藬?shù).

(2)求出總?cè)藬?shù)后乘以活動時間為5天的人數(shù)所占的百分比求出活動時間為5天的人數(shù),即可補全直方圖;

(3)用360°乘以活動時間為4天的人數(shù)所占的百分比即可求出活動時間為4天的扇形所對圓心角的度數(shù).

(4)用總?cè)藬?shù)乘以活動時間不少于4天的人數(shù)所占的百分比即可求出答案.

解:(1)扇形統(tǒng)計圖中a=%1﹣30%﹣15%﹣10%﹣5%﹣15%=25%,

a=25,

該校初一學(xué)生總?cè)藬?shù)20÷10%=200(人)

(2)根據(jù)題意得活動時間為5天的人數(shù)是50人,即可畫出圖形;

(3)“活動時間為4的扇形所對圓心角的度數(shù)為360°×30%=108°;

(4)“活動時間不少于4的大約有6000×(1﹣25%)=4500(人);

故答案為:25,200,108°,4500.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上,從點A出發(fā),沿數(shù)軸向右移動3個單位長度到達(dá)點C,點B所表示的有理數(shù)是5的相反數(shù),按要求完成下列各小題.

(1)請在數(shù)軸上標(biāo)出點B和點C;

(2)求點B所表示的有理數(shù)與點C所表示的有理數(shù)的乘積;

(3)若將該數(shù)軸進(jìn)行折疊,使得點A和點B重合,則點C和數(shù)   所表示的點重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形.
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的正方形格中,ABC的頂點均在格點上,請在所給直角坐標(biāo)系中按要求畫圖和解答下列問題:

1)將ABC沿x軸翻折后再沿x軸向右平移1個單位,在圖中畫出平移后的AB1C1.若ABC內(nèi)有一點Pa,b),則經(jīng)過兩次變換后點P的坐標(biāo)變?yōu)?/span>      

2作出ABC關(guān)于坐標(biāo)原點O成中心對稱的A2B2C2

3)若將ABC繞某點逆時針旋轉(zhuǎn)90°后,其對應(yīng)點分別為A32,1),B34,0),C33﹣2),則旋轉(zhuǎn)中心坐標(biāo)為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(5,0),菱形OABC的頂點B,C都在第一象限,tan∠AOC= ,將菱形繞點A按順時針方向旋轉(zhuǎn)角α(0°<∠α<∠AOC)得到菱形FADE(點O的對應(yīng)點為點F),EF與OC交于點G,連結(jié)AG.

(1)求點B的坐標(biāo).
(2)當(dāng)OG=4時,求AG的長.
(3)求證:GA平分∠OGE.
(4)連結(jié)BD并延長交x軸于點P,當(dāng)點P的坐標(biāo)為(12,0)時,求點G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是(

A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿對角線AC折疊,點B落在點E處,CE與AD相交于點O.

(1)求證:△AOE≌△COD;

(2)若∠OCD=30°,AB=,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A,CEF,ADBCDEBF,AECF.

(1)求證:四邊形ABCD是平行四邊形;

(2)直接寫出圖中所有相等的線段(AECF除外).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線x0)經(jīng)過平行四邊形ABCO的對角線交點D,已知邊OCy軸上,且ACAB于點C,則平行四邊形ABCO的面積是( 。

A. B. C. 3 D. 6

【答案】A

【解析】試題分析:∵點D為平行四邊形ABCO的對角線交點,雙曲線yx0)經(jīng)過點DACy軸,

S平行四邊形ABCO4SCOD×||

故選A.

點睛:本題考查了反比例函數(shù)系數(shù)k的幾何意義以及平行四邊形的性質(zhì),根據(jù)平行四邊形的性質(zhì)結(jié)合反比例函數(shù)系數(shù)k的幾何意義,找出S平行四邊形ABCO=4SCOD=2|k|是解題的關(guān)鍵.

型】單選題
結(jié)束】
9

【題目】如果分式在實數(shù)范圍內(nèi)有意義,則的取值范圍是_____________.

查看答案和解析>>

同步練習(xí)冊答案