如圖,拋物線y=ax2+bx+c(a>0)交x軸于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),交y軸于點(diǎn)C.已知B(8,0),tan∠ABC=,△ABC的面積為8.
(1)求拋物線的解析式;
(2)若動(dòng)直線EF(EF∥x軸)從點(diǎn)C開始,以每秒1個(gè)長度單位的速度沿y軸負(fù)方向平移,且交y軸、線段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā),在線段OB上以每秒2個(gè)單位的速度向原點(diǎn)O運(yùn)動(dòng).連接FP,設(shè)運(yùn)動(dòng)時(shí)間t秒.當(dāng)t為何值時(shí),的值最大,求出最大值;
(3)在滿足(2)的條件下,是否存在t的值,使以P、B、F為頂點(diǎn)的三角形與△ABC相似.若存在,試求出t的值;若不存在,請說明理由.

【答案】分析:(1)求出A,B,C,三點(diǎn)的坐標(biāo)代入拋物線y=ax2+bx+c,問題得解.
(2)利用相似三角形得到,和t的關(guān)系式問題得解.
(3)因?yàn)橄嗨茖?yīng)的不唯一性,需要討論,分別求出滿足題意的t的值.
解答:解:(1)由題意知∠COB=90°B(8,0)OB=8,
在Rt△OBC中tan∠ABC=OC=OB×tan∠ABC=8×=4,
∴C(0,4),,
∴AB=4,
∴A(4,0)
把A、B、C三點(diǎn)的坐標(biāo)代入y=ax2+bx+c(a>0)得,
解得.所以拋物線的解析式為;

(2)C(0,4)B(8,0)E(0,4-t)(t>0),
OB=2OC=8CE=tBP=2tOP=8-2t,
∵EF∥OB,
∴△CEF∽△COB,
,
則有得EF=2t,
=
當(dāng)t=2時(shí)有最大值2.

(3)存在符合條件的t值,使△PBF與△ABC相似.
C(0,4),B(8,0),E(0,4-t),F(xiàn)(2t,4-t),P(8-2t,0)(t>0),
AB=4BP=2t,BF=,
∵OC=4,
∴BC=
①當(dāng)點(diǎn)P與A、F與C對應(yīng),即△PBF∽△ABC,
,
代入得,
解得;
②當(dāng)點(diǎn)P與C、F與A對應(yīng),即△PBF∽△CBA,
,
代入得
解得(不合題意,舍去).
綜上所述:符合條件的
點(diǎn)評:本題考查用一般式求二次函數(shù)的解析式及二次函數(shù)與方程、幾何知識(shí)的綜合應(yīng)用,將函數(shù)知識(shí)與方程、幾何知識(shí)有機(jī)地結(jié)合在一起.這類試題一般難度較大.解這類問題關(guān)鍵是善于將函數(shù)問題轉(zhuǎn)化為方程問題,善于利用幾何圖形的有關(guān)性質(zhì)、定理和二次函數(shù)的知識(shí),并注意挖掘題目中的一些隱含條件.體現(xiàn)的數(shù)學(xué)思想是分類討論思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案