如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,DE⊥BC,垂足為E.

(1)求證:DE是⊙O的切線;

(2)若DG⊥AB,垂足為點(diǎn)F,交⊙O于點(diǎn)G,∠A=35°,⊙O半徑為5,求劣弧DG的長(zhǎng).(結(jié)果保留π)

 

【答案】

解:(1)證明:連接BD、OD,

∵AB是⊙O直徑,∴∠ADB=90°。∴BD⊥AC。

∵AB=BC,∴AD=DC。

∵AO=OB,∴DO∥BC。

∵DE⊥BC,∴DE⊥OD。

∵OD為半徑,∴DE是⊙O切線。

(2)連接OG,

∵DG⊥AB,OB過(guò)圓心O,∴弧BG=弧BD。

∵∠A=35°,∴∠BOD=2∠A=70°!唷螧OG=∠BOD=70°!唷螱OD=140°。

∴劣弧DG的長(zhǎng)是。

【解析】

試題分析:(1)連接BD,OD,求出OD∥BC,推出OD⊥DE,根據(jù)切線判定推出即可。

(2)求出∠BOD=∠GOB,從而求出∠BOD的度數(shù),根據(jù)弧長(zhǎng)公式求出即可!

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案