二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列結(jié)論:
①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤當(dāng)y=2時(shí),x只能等于0,
其中正確的有


  1. A.
    3個(gè)
  2. B.
    2個(gè)
  3. C.
    1個(gè)
  4. D.
    4個(gè)
B
分析:由拋物線的開口方向判斷a與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解答:①如圖,∵拋物線與x軸有2個(gè)交點(diǎn),
∴b2-4ac>0.
故①錯(cuò)誤;
②如圖,∵拋物線的開口方向向下,
∴a<0.
∵對(duì)稱軸x=-=2,
∴b=-4a>0,
∴ab<0.故②錯(cuò)誤;
③如圖,∵當(dāng)x=-1時(shí),y=0,
∴a-b+c=0.故③正確;
④如圖,∵對(duì)稱軸x=-=2,
∴b=-4a,
∴4a+b=0.故④正確;
⑤如圖,當(dāng)y=2時(shí),根據(jù)拋物線的對(duì)稱性,x有2個(gè)值.故⑤錯(cuò)誤.
綜上所述,正確的結(jié)論有③④,共2個(gè).
故選B.
點(diǎn)評(píng):主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示.對(duì)于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊答案