已知若m2-2m=1,則2m2-4m+2012的值是
2014
2014
分析:把m2-2m的值整體代入進行計算即可得解.
解答:解:∵m2-2m=1,
∴2m2-4m+2012=2(m2-2m)+2012,
=2×1+2012,
=2014.
故答案為:2014.
點評:本題考查了代數(shù)式求值,整體思想的利用是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2-(2m-1)x+m2-m(m是常數(shù),且m≠0).
(1)證明:不論m取何值時,該二次函數(shù)圖象總與x軸有兩個交點;
(2)設與x軸兩個交點的橫坐標分別為x1,x2(其中x1>x2),若y是關于m的函數(shù),且y=1-
x2x1
,結合函數(shù)的圖象回答:當自變量m的取值滿足什么條件時,y≤2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先閱讀后解題
若m2+2m+n2-6n+10=0,求m和n的值.
解:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0
∵(m+1)2≥0,(n-3)2≥0
∴(m+1)2=0,(n-3)2=0
∴m+1=0,n-3=0
∴m=-1,n=3
利用以上解法,解下列問題:
已知 x2+5y2-4xy+2y+1=0,求x和y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

先閱讀后解題
若m2+2m+n2-6n+10=0,求m和n的值.
解:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0
∵(m+1)2≥0,(n-3)2≥0
∴(m+1)2=0,(n-3)2=0
∴m+1=0,n-3=0
∴m=-1,n=3
利用以上解法,解下列問題:
已知 x2+5y2-4xy+2y+1=0,求x和y的值.

查看答案和解析>>

科目:初中數(shù)學 來源:期中題 題型:解答題

先閱讀后解題
若m2+2m+n2-6n+10=0,求m和n的值
解:把等式的左邊分解因式:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0,
因為(m+1)2≥0,(n-3)2≥0
所以m+1=0,n-3=0,
即m=-1,n=3
利用以上解法,解下列問題:
已知x2+y2-x+6y+=0,求x和y的值。

查看答案和解析>>

同步練習冊答案