【題目】如圖(1),E是直線AB、CD內部一點,AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數量關系,并證明你的結論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)
【答案】(1)①∠AED=70°;
②∠AED=80°;
③猜想:∠AED=∠EAB+∠EDC,證明見解析;
(2)點P在區(qū)域①時,∠EPF=360°﹣(∠PEB+∠PFC);
點P在區(qū)域②時,∠EPF=∠PEB+∠PFC;
點P在區(qū)域③時,∠EPF=∠PEB﹣∠PFC;
點P在區(qū)域④時,∠EPF=∠PFC﹣∠PEB.
【解析】(1)①根據圖形猜想得出所求角度數即可;
②根據圖形猜想得出所求角度數即可;
③猜想得到三角關系,理由為:延長AE與DC交于F點,由AB與DC平行,利用兩直線平行內錯角相等得到一對角相等,再利用外角性質及等量代換即可得證;
(2)分四個區(qū)域分別找出三個角關系即可.
解:(1)①∠AED=70°;
②∠AED=80°;
③猜想:∠AED=∠EAB+∠EDC,
證明:延長AE交DC于點F,
∵AB∥DC,
∴∠EAB=∠EFD,
∵∠AED為△EDF的外角,
∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;
(2)根據題意得:
點P在區(qū)域①時,∠EPF=360°﹣(∠PEB+∠PFC);
點P在區(qū)域②時,∠EPF=∠PEB+∠PFC;
點P在區(qū)域③時,∠EPF=∠PEB﹣∠PFC;
點P在區(qū)域④時,∠EPF=∠PFC﹣∠PEB.
“點睛”此題考查了平行線的性質,熟練掌握平行線的性質是解本題的關鍵.
科目:初中數學 來源: 題型:
【題目】甲、乙兩臺機器共加工一批零件,在加工過程中兩臺機器均改變了一次工作效率.從工作開始到加工完這批零件兩臺機器恰好同時工作6小時.甲、乙兩臺機器各自加工的零件個數y(個)與加工時間x(時)之間的函數圖象分別為折線OA﹣AB與折線OC﹣CD.如圖所示.
(1)甲機器改變工作效率前每小時加工零件 個.
(2)求乙機器改變工作效率后y與x之間的函數關系式,并求出自變量x的取值范圍.
(3)求這批零件的總個數.
(4)直接寫出當甲、乙兩臺機器所加工零件數相差10個時,x的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為m厘米的大正方形,兩塊是邊長都為n厘米的小正方形,五塊是長寬分別是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代數式表示切痕的總長為_____________厘米;
(2)若每塊小矩形的面積為48厘米2,四個正方形的面積和為200厘米2,試求(m+n)2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
填空:
如圖,已知∠1+∠2=180°,∠3=∠B,求證:∠AED=∠ACB.
證明:∵∠1+∠2=180°(已知)
∠1+________=180°(鄰補角的定義)
∴∠2=________(同角的補角定義)
∴AB∥EF(___________________)
∴∠3=________(_____________________)
又∵∠3=∠B(已知)
∴∠B=________(等量代換)
∴DE∥BC(_________________)
∴∠AED=∠ACB(__________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一位同學拿了兩塊45°的三角尺△MNK、△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設AC=BC=a.
(1)如圖1,兩個三角尺的重疊部分為△ACM,則重疊部分的面積為 ,周長為 .
(2)將圖1中的△MNK繞頂點M逆時針旋轉45°,得到圖2,此時重疊部分的面積為 ,周長為 .
2(3)如果將△MNK繞M旋轉到不同于圖1,圖2的位置,如圖3所示,猜想此時重疊部分的面積為多少?并試著加以驗證.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 (2016湖南湘西州第14題)一個等腰三角形一邊長為4cm,另一邊長為5cm,那么這個等腰三角形的周長是( )
A.13cm B.14cm C.13cm或14cm D.以上都不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次數學知識競賽共有30道題,規(guī)定,答對一道題得4分,不答或答錯一道題倒扣2分,若甲同學答對25題,答錯5道題,則甲 同學得________分,若得分低于60分者獲獎,則獲獎者至少應答對________道題。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com