【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,-1)和C(4,5)三點(diǎn).

(1)求二次函數(shù)的解析式;

(2)設(shè)二次函數(shù)的圖象與x軸的另一個交點(diǎn)為D,求點(diǎn)D的坐標(biāo);

(3)在同一坐標(biāo)系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值.

【答案】(1)y=x2-x-1; (2)(-1,0);(3)見圖象

【解析】(1)根據(jù)二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,-1)和C(4,5)三點(diǎn),代入得出關(guān)于a,b,c的三元一次方程組,求得a,b,c,從而得出二次函數(shù)的解析式;
(2)令y=0,解一元二次方程,求得x的值,從而得出與x軸的另一個交點(diǎn)坐標(biāo);
(3)畫出圖象,再根據(jù)圖象直接得出答案.

解:(1)∵二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,-1)和C(4,5)三點(diǎn),
,

∴a=,b=-,c=-1,
∴二次函數(shù)的解析式為y=x2-x-1;
(2)當(dāng)y=0時,得x2-x-1=0;
解得x1=2,x2=-1,
∴點(diǎn)D坐標(biāo)為(-1,0);

(3)圖象如圖,


當(dāng)一次函數(shù)的值大于二次函數(shù)的值時,x的取值范圍是-1<x<4.

“點(diǎn)睛”本題考查了用待定系數(shù)法求二次函數(shù)的解析式以及一次函數(shù)的圖象、拋物線與x軸的交點(diǎn)問題,是中檔題,要熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:m2﹣m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x+2y=3在實(shí)數(shù)范圍內(nèi)的解有(

A.無數(shù)個B.1C.2D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)AB、C,請?jiān)诰W(wǎng)格中進(jìn)行下列操作:

(1)請?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為   

(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);

(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的每個內(nèi)角均為120°,則這個多邊形是(
A.四邊形
B.五邊形
C.六邊形
D.七邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式
(x﹣1)(x+1)=x2﹣1,
(x﹣1)(x2+x+1)=x3﹣1,
(x﹣1)(x3+x2+x+1)=x4﹣1,
……
(1)根據(jù)以上規(guī)律,則(x﹣1)(x6+x5+x4+x3+x2+x+1)=
(2)你能否由此歸納出一般性規(guī)律:(x﹣1)(xn+xn1+…+x+1)=
(3)根據(jù)以上規(guī)律求1+3+32+…+334+335的結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小剛和小紅各自隨機(jī)選擇本周日的上午或下午去揚(yáng)州科技館參觀.

(1) 小明、小剛本周日的上午去參觀的概率為_____;

(2) 求他們?nèi)嗽谕话胩烊⒂^的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個圖形上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)乘以-1,則所得圖形與原圖形的關(guān)系為(

A. 關(guān)于x軸成軸對稱圖形 B. 關(guān)于y軸成軸對稱圖形

C. 關(guān)于原點(diǎn)成中心對稱圖形 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△PAB中,PA=PB,M,N,K分別是PA,PB,AB上的點(diǎn),且AM=BK,BN=AK,若∠MKN=44°,則∠P的度數(shù)為( )

A.44°
B.66°
C.88°
D.92°

查看答案和解析>>

同步練習(xí)冊答案