(9分)已知二次函數(shù)的圖象與x軸相交于A、B兩點(diǎn)(A
左B右),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)求m的取值范圍;
(2)當(dāng)點(diǎn)A的坐標(biāo)為,求點(diǎn)B的坐標(biāo);
(3)當(dāng)BC⊥CD時(shí),求m的值.

解:(1)∵二次函數(shù)的圖象與x軸相交于A、B兩點(diǎn)
∴b2-4ac>0,∴4+4m>0,······································································· 2分
解得:m>-1························································································· 3分
(2)解法一:
∵二次函數(shù)的圖象的對(duì)稱軸為直線x=-=1························· 4分
∴根據(jù)拋物線的對(duì)稱性得點(diǎn)B的坐標(biāo)為(5,0)··············································· 6分
解法二:
把x=-3,y=0代入中得m="15···············································" 4分
∴二次函數(shù)的表達(dá)式為
令y=0得········································································ 5分
解得x1=-3,x2=5
∴點(diǎn)B的坐標(biāo)為(5,0)··········································································· 6分
(3)如圖,過(guò)D作DE⊥y軸,垂足為E.

∴∠DEC=∠COB=90°,
當(dāng)BC⊥CD時(shí),∠DCE +∠BCO=90°,
∵∠DEC=90°,∴∠DCE +∠EDC=90°,∴∠EDC=∠BCO.
∴△DEC∽△COB,∴.····························································· 7分
由題意得:OE=m+1,OC=m,DE=1,∴EC=1.∴
∴OB=m,∴B的坐標(biāo)為(m,0).······························································ 8分
將(m,0)代入得:-m 2+2 m + m=0.
解得:m1=0(舍去), m2=3.·································································· 9分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象與x軸交點(diǎn)的橫坐標(biāo)分別為x1=4,x2=-2,且圖象經(jīng)過(guò)點(diǎn)(0,-4),求這個(gè)二次函數(shù)的解析式,并求出最大(或最。┲担

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象與x軸兩交點(diǎn)間的距離為2,若將圖象沿y軸方向向上平移3個(gè)單位,則圖象恰好經(jīng)過(guò)原點(diǎn),且與x軸兩交點(diǎn)間的距離為4,求原二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,a),與x軸的交點(diǎn)坐標(biāo)為(b,0)和(-b,0),若a>0,則函數(shù)解析式為( 。
A、y=
a
b2
x2+a
B、y=-
a
b2
x2+a
C、y=-
a
b2
x2-a
D、y=
a
b2
x2-a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0),且與直線y=kx-4交y軸于點(diǎn)C. 
(1)求這個(gè)二次函數(shù)的解析式;
(2)如果直線y=kx-4經(jīng)過(guò)二次函數(shù)的頂點(diǎn)D,且與x軸交于點(diǎn)E,△AEC的面積與△BCD的面積是否相等?如果相等,請(qǐng)給出證明;如果不相等,請(qǐng)說(shuō)明理由;
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象與x軸交于A(-2,0),B(3,0)兩點(diǎn),且函數(shù)有最大值為2,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案