【題目】下列說法正確的有( 。

同位角相等;

若∠A+B+C180°,則∠A、∠B、∠C互補;

同一平面內的三條直線a、b、c,若ab,ca相交,則cb相交;

同一平面內兩條直線的位置關系可能是平行或垂直;

有公共頂點并且相等的角是對頂角.

A. 1B. 2C. 3D. 4

【答案】A

【解析】

根據(jù)相交直線的位置關系綜合判定即可.

解:∵同位角不一定相等,∴錯誤;

∵互補或互余是兩個角之間的關系,∴說∠A+B+C180°,則∠A、∠B、∠C互補錯誤,∴錯誤;

∵同一平面內的三條直線ab、c,若abca相交,則cb相交,∴正確;

∵同一平面內兩條直線的位置關系可能是平行或相交,∴錯誤;

∵如圖,

ABC=∠ABD,∠ABC和∠ABD有公共頂點并且相等的角,但不是對頂角,∴錯誤;

即正確的個數(shù)是1個,

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=(x-1)2-4,AB為半圓的直徑,求這個“果圓”被y軸截得的弦CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張大伯承包了一個四邊形的池塘,如圖所示,它的四個角A,B,C,D處均有一棵大樹,張大伯今年養(yǎng)魚喜獲豐收,明年準備把池塘面積擴大一倍,但又不想毀掉這四棵大樹,并且擴建后的池塘呈平行四邊形形狀.張大伯這一設想是否能實現(xiàn)?請你幫助他解決一下,并畫出草圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應“中小學生每天鍛煉1小時”的號召,某校開展了形式多樣的“陽光體育”活動,小明對某班同學參加鍛煉的情況進行了調查與統(tǒng)計,并繪制了下面的圖1與圖2.根據(jù)你對圖1與圖2的理解,回答下列問題:

1)小明調查的這個班級有多少名學生,參加足球鍛煉的學生人數(shù)所占的百分比是多少?

2)請你將圖1中“乒乓球”部分補充完整.

3)求出扇形統(tǒng)計圖中表示“足球”的扇形的圓心角的度數(shù).

4)若這個學校共有1200名學生,估計參加乒乓球活動的學生有多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=∠CAE,AB=AD,AC=AE.且E,F(xiàn),C,D在同一直線上.

(1)求證:△ABC≌△ADE;

(2)若∠B=30°,∠BAC=100°,點F是CE的中點,連結AF,求∠FAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點D,PC=4,PD的長為(  )

A. 2 B. 3 C. 4 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知B=30°,C=45°

(1)求B,C之間的距離;(保留根號)

(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°,ABCD,MBC邊上的一點,且AM平分∠BAD,DM平分∠ADC.

求證:(1)AMDM;

(2)MBC的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更好地推進太原市生活垃圾分類工作,改善城市生態(tài)環(huán)境,20191217日,太原市政府召開了太原市生活垃圾分類推進會,意味著太原垃圾分類戰(zhàn)役的全面打響.某小區(qū)準備購買A、B兩種型號的垃圾箱,通過市場調研得知:購買3A型垃圾箱和2B型垃圾箱共需540元,購買2A型垃圾箱比購買3B型垃圾箱少用160元.

1)求每個A型垃圾箱和B型垃圾箱各多少元?

2)該小區(qū)物業(yè)計劃用不多于2100元的資金購買A、B兩種型號的垃圾箱共20個,則該小區(qū)最多可以購買B型垃圾箱多少個?

3)在(2)的條件下,要求至少購買3B型垃圾箱,請設計出最省錢的購買方案,并求出最少購買費用.

查看答案和解析>>

同步練習冊答案