【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F為AB的中點,DE,AB相交于點G,若∠BAC=30°,下列結論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結論的序號是( 。
A. ②④ B. ①③ C. ②③④ D. ①③④
【答案】D
【解析】解:∵△ACE是等邊三角形,∴∠EAC=60°,AE=AC.
∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC.
∵F為AB的中點,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴∠AEF=∠BAC=30°,∴EF⊥AC.故①正確;(含①的只有B和D,它們的區(qū)別在于有沒有④.它們都是含30°的直角三角形,并且斜邊是相等的).
∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°.
∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF.
∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS).
故選D.
科目:初中數學 來源: 題型:
【題目】已知關于x的一次函數y=(2m-4)x+3n.
(1)當m,n取何值時,y隨x的增大而增大?
(2)當m,n取何值時,函數圖象經過原點?
(3)當m,n取何值時,函數圖象與y軸交點在x軸上方?
(4)若圖象經過一、三、四象限,求m,n的取值范圍?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為了節(jié)約用水,對自來水的收費標準作如下規(guī)定:每月每戶用水不超過10噸的部分,按2元/噸收費;超過10噸的部分按2.5元/噸收費.
(1)若黃老師家5月份用水16噸,問應交水費多少元?
(2)若黃老師家6月份交水費30元,問黃老師家5月份用水多少噸?
(3)若黃老師家7月用水a噸,問應交水費多少元?(用a的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC中,線段AM為BC邊上的高,D是AM上的點,以CD為一邊,在CD的下方作等邊△CDE,連結BE.
(1)填空:∠ACB=____;∠CAM=____;
(2)求證:△AOC≌△BEC;
(3)延長BE交射線AM于點F,請把圖形補充完整,并求∠BFM的度數;
(4)當動點D在射線AM上,且在BC下方時,設直線BE與直線AM的交點為F.∠BFM的大小是否發(fā)生變化?若不變,請在備用圖中面出圖形,井直接寫出∠BFM的度數;若變化,請寫出變化規(guī)律.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM,則下列五個結論中正確的是( 。
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;
④連接AN,則AN⊥BE;
⑤當AM+BM+CM的最小值為2時,菱形ABCD的邊長為2.
A. ①②③ B. ②④⑤ C. ①②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于點E,AE平分∠BAC,AO=CO,AD=DC=2,下面結論:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這
個分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號即可);
(2)若為正整數,且為“和諧分式”,請寫出的值;
(3)在化簡時,
小東和小強分別進行了如下三步變形:
小東:
小強:
顯然,小強利用了其中的和諧分式, 第三步所得結果比小東的結果簡單,
原因是: ,
請你接著小強的方法完成化簡.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com