如圖,圓錐形甜筒的母線長(zhǎng)OA為6,AC是底面圓的直徑,底面圓的半徑為3.若一只螞蟻在底面上點(diǎn)A處,在母線OC的中點(diǎn)B處有一粒殘余甜點(diǎn),螞蟻要沿圓錐側(cè)面吃到甜點(diǎn),需要爬行的最短距離為    (計(jì)算結(jié)果保留根號(hào)).
【答案】分析:要求螞蟻爬行的最短距離,需將圓錐的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.
解答:解:由題意知,底面圓的直徑AC=6,故底面周長(zhǎng)等于6π.
設(shè)圓錐的側(cè)面展開(kāi)后的扇形圓心角為n°,
根據(jù)底面周長(zhǎng)等于展開(kāi)后扇形的弧長(zhǎng)得,6π=,
解得n=180,所以展開(kāi)圖中∠A′OB=90°,
根據(jù)勾股定理求得A′B===3,
故答案為:3
點(diǎn)評(píng):此題主要考查了平面展開(kāi)圖中最短路徑問(wèn)題,利用圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).本題就是把圓錐的側(cè)面展開(kāi)成扇形,“化曲面為平面”,用勾股定理解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓錐形甜筒的母線長(zhǎng)OA為6,AC是底面圓的直徑,底面圓的半徑為3.若一只螞蟻在底面上點(diǎn)A處,在母線OC的中點(diǎn)B處有一粒殘余甜點(diǎn),螞蟻要沿圓錐側(cè)面吃到甜點(diǎn),需要爬行的最短距離為
3
5
3
5
(計(jì)算結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢)如圖,圓錐形冰淇淋盒的母線長(zhǎng)是13cm,高是12cm,則該圓錐形底面圓的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓錐形冰淇淋盒的母線長(zhǎng)是25cm,高24cm,則該圓錐形的側(cè)面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,圓錐形甜筒的母線長(zhǎng)OA為6,AC是底面圓的直徑,底面圓的半徑為3.若一只螞蟻在底面上點(diǎn)A處,在母線OC的中點(diǎn)B處有一粒殘余甜點(diǎn),螞蟻要沿圓錐側(cè)面吃到甜點(diǎn),需要爬行的最短距離為_(kāi)_______(計(jì)算結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案