【題目】如圖,ABCD的邊AD與經(jīng)過(guò)A、B、C三點(diǎn)的⊙O相切

(1)求證:弧AB=弧AC
(2)如圖2,延長(zhǎng)DC交⊙O于點(diǎn)E,連接BE,sin∠E= ,求tan∠D

【答案】
(1)證明:證明:連接OA交BC于F.

∵四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠DAF=∠CFO,

∵AD是⊙O的切線,

∴∠OAD=90°,

∴∠OFC=90°,

∴OF⊥BC,

∴OA平分 ,

=


(2)解:如圖2中,作BM⊥EC于M,AN⊥EC于N,連接AC.

∵四邊形ABCD是平行四邊形,

∴∠D=∠ABC=∠BCE,

= ,

= ,

= = ,

∴BE=AB=AC, = ,

∴∠E=∠ACE,

在Rt△BEM中,sin∠E= ,設(shè)BE=13m,則BM=12m,EM=5m,

在Rt△ANC中,sin∠ACN=sin∠E= ,AC=EB=13m,則CN=5m,

∵BM=CN,BM∥CN,

∴四邊形BMNA是平行四邊形,

∴MN=AB=EB=13m,

∴CM=18m,

∴tan∠BCE= = = ,

∴tan∠D=


【解析】(1.)如圖1中,連接OA交BC于F.只要證明OF⊥BC即可解決問(wèn)題. (2.)如圖2中,作BM⊥EC于M,AN⊥EC于N,連接AC.首先證明BE=AB=AC, = ,推出∠E=∠ACE,在Rt△BEM中,sin∠E= ,設(shè)BE=13m,則BM=12m,EM=5m,在Rt△ANC中,sin∠ACN=sin∠E= ,AC=EB=13m,則CN=5m,由四邊形BMNA是平行四邊形,推出MN=AB=EB=13m,推出CM=18m,推出tan∠BCE= = = ,可得tan∠D=
【考點(diǎn)精析】掌握平行四邊形的性質(zhì)和切線的性質(zhì)定理是解答本題的根本,需要知道平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)某十字路口的汽車(chē),它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種可能性大小相同,現(xiàn)有兩輛汽車(chē)經(jīng)過(guò)這個(gè)十字路口.
(1)試用樹(shù)狀圖或列表法中的一種列舉出這輛汽車(chē)行駛方向所有可能的結(jié)果;
(2)求至少有一輛汽車(chē)向左轉(zhuǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“兩直線平行,內(nèi)錯(cuò)角的平分線互相平行”是真命題嗎?如果是,請(qǐng)給出證明;如果不是,請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E為邊AB的中點(diǎn),將△CBE沿CE翻折得到△CFE,連接AF.若∠EAF=70°,那么∠BCF=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地區(qū)5000名九年級(jí)學(xué)生體育成績(jī)狀況,隨機(jī)抽取了若干名學(xué)生進(jìn)行測(cè)試,將成績(jī)按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題
(1)在這次抽樣調(diào)查中,一共抽取了名學(xué)生;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)估計(jì)該地區(qū)九年級(jí)學(xué)生體育成績(jī)?yōu)锽的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AC=BC,ACB=90°,點(diǎn) D,E分別在AB,BC上,且AD=BE,BD=AC,過(guò)EEFABF.

(1)求證:FED=CED;

(2) BF=,直接寫(xiě)出 CE的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y= x2經(jīng)過(guò)點(diǎn)A(x1 , y1)、C(x2 , y2),其中x1、x2是方程x2﹣2x﹣8的兩根,且x1<x2 , 過(guò)點(diǎn)A的直線l與拋物線只有一個(gè)公共點(diǎn)

(1)求A、C兩點(diǎn)的坐標(biāo);
(2)求直線l的解析式;
(3)如圖2,點(diǎn)B是線段AC上的動(dòng)點(diǎn),若過(guò)點(diǎn)B作y軸的平行線BE與直線l相交于點(diǎn)E,與拋物線相交于點(diǎn)D,過(guò)點(diǎn)E作DC的平行線EF與直線AC相交于點(diǎn)F,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)將一批學(xué)生書(shū)包按成本價(jià)提高50%后標(biāo)價(jià),又按標(biāo)價(jià)的80%優(yōu)惠賣(mài)出,每個(gè)的售價(jià)是72元.每個(gè)這種書(shū)包的成本價(jià)是多少元?利潤(rùn)是多少元?利潤(rùn)率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一公路AB和一鐵路CD在點(diǎn)A處交匯,且BAD=30°,在公路的點(diǎn)P處有一所學(xué)校(學(xué)?醋鼽c(diǎn)P,點(diǎn)P與公路AB的距離忽略不計(jì)),AP=320米,火車(chē)行駛時(shí),火車(chē)周?chē)?/span>200米以內(nèi)會(huì)受到噪音的影響,現(xiàn)有一列動(dòng)車(chē)在鐵路CD上沿AD方向行駛,該動(dòng)車(chē)車(chē)身長(zhǎng)200米,動(dòng)車(chē)的速度為180千米/時(shí),那么在該動(dòng)車(chē)行駛過(guò)程中.

1)學(xué)校P是否會(huì)受到噪聲的影響?說(shuō)明理由;

2)如果受噪聲影響,那么學(xué)校P受影響的時(shí)間為多少秒?

查看答案和解析>>

同步練習(xí)冊(cè)答案