【題目】鄭州市霧霾天氣趨于嚴重,丹尼斯商場根據(jù)民眾健康需要,代理銷售每臺 進價分別為600元、560元的A、B兩種型號的空氣凈化器,如表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 4臺 | 5臺 | 7100元 |
第二周 | 6臺 | 10臺 | 12600元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A,B兩種型號的空氣凈化器的銷售單價;
(2)若商場準備用不多于17200元的金額再采購這兩種型號的空氣凈化器共30臺,超市銷售完這30臺空氣凈化器能否實現(xiàn)利潤為6200元的目標,若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
【答案】(1)A型號空氣凈化器單價為800元,B型號空氣凈化器單價780元;(2) 最多能采購A型號空氣凈化器10臺,即可實現(xiàn)目標.
【解析】
試題分析:(1)設(shè)A型號空氣凈化器單價為x元,B型號空氣凈化器單價y元,根據(jù)4臺A型號,5臺B型號的銷售收入為7100元,6臺A型號10臺B型號的銷售收入為12600元,列方程組求解;(2)設(shè)采購A種型號空氣凈化器a臺,則采購B種型號空氣凈化器(30﹣a)臺,根據(jù)金額不多余17200元,列不等式求解;
試題解析:(1)設(shè)A型號空氣凈化器單價為x元,B型號空氣凈化器單價y元,則
,
解得:,
答:A型號空氣凈化器單價為800元,B型號空氣凈化器單價780元;
(2)設(shè)A型空氣凈化器采購a臺,采購B種型號空氣凈化器(30﹣a)臺.則
600a+560(30﹣a)≤17200,
解得:a≤10,
200a+220(30﹣a)≥6200,
解得:a≤20,
則最多能采購A型號空氣凈化器10臺,即可實現(xiàn)目標.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點P從點A出發(fā)沿邊AC向點C以1cm/s的速度移動,點Q從C點出發(fā)沿CB邊向點B以2cm/s的速度移動.
(1)、如果P、Q同時出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)、點P、Q在移動過程中,是否存在某一時刻,使得△PCQ的面積等于△ABC的面積的一半.若存在,求出運動的時間;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.同一平面內(nèi)不相交的兩線段必平行
B.同一平面內(nèi)不相交的兩射線必平行
C.同一平面內(nèi)不相交的一條線段與一條直線必平行
D.同一平面內(nèi)不相交的兩條直線必平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,A是線段BC上一點,△ABD和△ACE都是等邊三角形.
(1)連結(jié)BE,DC,求證:BE=DC.
(2)如圖②,將△ABD繞點A順時針旋轉(zhuǎn)得到△AB′D′.
①當旋轉(zhuǎn)角為__ _度時,邊AD′落在AE上.
②在①的條件下,延長DD′交CE于點P,連結(jié)BD′,CD′.當線段AB,AC滿足什么數(shù)量關(guān)系時,△BDD′與△CPD′全等?并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,BC是弦,直線CD是⊙O的切線,切點為C,BD⊥CD.
(1)如圖1,求證:BC平分∠ABD;
(2)如圖2,延長DB交⊙O于點E,求證:弧AC =弧EC;
(3)如圖3,在(2)的條件下,連接EA并延長至F,使EF=AB,連接CF、CE,若tan∠FCE=,BC=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進行對抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com