(本小題滿分5分)
已知:如圖,在△ABC中,∠A=30°, tanB=,AC=18,求BC、AB的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分11分)
如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
小題1:(1)連接GD,求證:△ADG≌△ABE;(2分)
小題2:(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù),并說(shuō)明理由;(3分)
小題3:(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變,若∠FCN的大小不變,請(qǐng)用含a、b的代數(shù)式表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)舉例說(shuō)明.(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,∠C=90°AC=8cm,AB的垂直平分線MN交AC與D,連接BD,若cos∠BDC=,則BC的長(zhǎng)是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題8分)
某數(shù)學(xué)興趣小組,利用樹(shù)影測(cè)量樹(shù)高.已測(cè)出樹(shù)AB的影長(zhǎng)AC為9米,并測(cè)出此時(shí)太陽(yáng)光線與地面成30°夾角.

(1)求出樹(shù)高AB;
(2)因水土流失,此時(shí)樹(shù)AB沿太陽(yáng)光線方向倒下,在傾倒過(guò)程中,樹(shù)影長(zhǎng)度發(fā)生了變化,假設(shè)太陽(yáng)光線與地面夾角保持不變。
小題1:①求樹(shù)與地面成45°角時(shí)的影長(zhǎng)。
小題2:②試求樹(shù)影的最大長(zhǎng)度.
(計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC中,.點(diǎn)P在△ABC內(nèi),且,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在RtABC中,∠CAB=90°,AD是∠CAB的平分線,tanB=,則CDDB=               

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,點(diǎn)E為CD上一點(diǎn),且DE=EC=BC
(1)若∠B=90°,求證:;
(2)若 AD=2,AE=5,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分7分)
如圖,不透明圓錐體DEC放在水平面上,在A處燈光照射下形成影子。設(shè)BP過(guò)底面的圓心O,已知圓錐的高為m,底面半徑為2m,BE=4m。求:

(1) 求∠B的度數(shù).
  (2)若∠ACP=2∠B,求光源A距水平面的高度。(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

因?yàn)閏os30º=,cos210º=-,所以cos210º=cos(180º+30º)=-cos30º=-;
因?yàn)閏os45º=cos225º=-所以cos225º=cos(180º+45º)=-cos45º=-
猜想:一般地,當(dāng)為銳角時(shí),有cos(180º+)=-cos.由此可知cos240º=  

查看答案和解析>>

同步練習(xí)冊(cè)答案