已知:如圖,CD是⊙O的直徑,AE切⊙O于點B,DC的延長線交AB于點A,∠A=20°,則∠DBE=    度.
【答案】分析:連接BC,由CD是⊙O的直徑知道∠CBD=90°,由AE是⊙O的切線知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.
解答:解:如圖,連接BC,
∵CD是⊙O的直徑,
∴∠CBD=90°,
∵AE是⊙O的切線,
∴∠DBE=∠1,∠2=∠D;
又∵∠1+∠D=90°,
即∠1+∠2=90°---(1),
∠A+∠2=∠1----(2),
(1)-(2)得∠1=55°
即∠DBE=55°.
故答案為:∠DBE=55°.
點評:本題考查的是弦切角的性質(zhì)及圓周角定理,三角形內(nèi)角與外角的關(guān)系,是一道較簡單的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,CD是⊙O的直徑,點A在CD的延長線上,AB切⊙O于點B,若∠A=30°,OA=10,則AB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

1、已知:如圖,CD是⊙O的直徑,AE切⊙O于點B,DC的延長線交AB于點A,∠A=20°,則∠DBE=
55
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,CD是△ABC的高,AC=4,BC=3,DB=
95

(1)求AD的長;
(2)△ABC是直角三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•河北區(qū)一模)已知,如圖,CD是⊙O的直徑,BC是⊙O的切線,切點為C,BC=
3
,BF=
1
2
,AE:EF=8:3
求:ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,CD是Rt△FBE的中位線,A是EB延長線上一點,AD∥BC.
(1)證明四邊形ABCD是平行四邊形.
(2)若AD=3cm,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案