【題目】如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是 .
【答案】4m
【解析】解:設(shè)路燈的高度為xm, ∵EF∥AD,
∴△BEF∽△BAD,
∴ ,
即 = ,
解得DF=x﹣1.8,
∵M(jìn)N∥AD,
∴△CMN∽△CAD,
∴ ,
即 = ,
解得DN=x﹣1.5,
∵兩人相距4.7m,
∴FD+ND=4.7,
∴x﹣1.8+x﹣1.5=4.7,
解得x=4,
故答案為:4m.
設(shè)路燈的高度為xm,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得, ,即 = ,可得DF的表達(dá)式,再根據(jù)相似三角形對(duì)應(yīng)邊成比例,同樣可得DN的表達(dá)式,由于DF+DN=4.7,可得關(guān)于x的方程,然后解方程求出x即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下框中是小明對(duì)一道題目的解答以及老師的批改.
題目:某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m的空地,其他三側(cè)內(nèi)墻各保留1m的通道,當(dāng)溫室的長與寬各為多少時(shí),矩形蔬菜種植區(qū)域的面積是288m2? |
我的結(jié)果也正確!
(1)小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個(gè)?.結(jié)果為何正確呢?
(2)請指出小明解答中存在的問題,并補(bǔ)充缺少的過程: 變化一下會(huì)怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內(nèi)部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設(shè)AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應(yīng)滿足什么條件?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有學(xué)生2100人,在“文明我先行”活動(dòng)中,開設(shè)了“法律、禮儀、環(huán)保、感恩、互助”五門校本課程,規(guī)定每位學(xué)生必須且只能選一門,為了解學(xué)生的報(bào)名意向,學(xué)校隨機(jī)調(diào)查了100名學(xué)生,并制成統(tǒng)計(jì)表:校本課程意向統(tǒng)計(jì)表
課程類型 | 頻數(shù) | 頻率(%) |
法律 | s | 0.08 |
禮儀 | a | 0.20 |
環(huán)保 | 27 | 0.27 |
感恩 | b | m |
互助 | 15 | 0.15 |
合計(jì) | 100 | 1.00 |
請根據(jù)統(tǒng)計(jì)表的信息,解答下列問題;
(1)在這次調(diào)查活動(dòng)中,學(xué)校采取的調(diào)查方式是(填寫“普查”或“抽樣調(diào)查”);
(2)a= , b= , m=;
(3)如果要畫“校本課程報(bào)名意向扇形統(tǒng)計(jì)圖”,那么“禮儀”類校本課程對(duì)應(yīng)的扇形圓心角的度數(shù)是;
(4)請你估計(jì),選擇“感恩”類校本課程的學(xué)生約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)E重合,將三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點(diǎn)M,N,設(shè)∠AEM=α(0°<α<90°),給出下列四個(gè)結(jié)論: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④S△EMN= .
上述結(jié)論中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點(diǎn),連接OF并延長交弧AC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BA的延長線于點(diǎn)E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時(shí),求出四邊形ACDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點(diǎn),連接OF并延長交弧AC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BA的延長線于點(diǎn)E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時(shí),求出四邊形ACDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了進(jìn)一步改進(jìn)本校七年級(jí)數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,校教務(wù)處在七年級(jí)所有班級(jí)中,每班隨機(jī)抽取了6名學(xué)生,并對(duì)他們的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對(duì)這個(gè)題目,問卷時(shí)要求每位被調(diào)查的學(xué)生必須從中選一項(xiàng)且只能選一項(xiàng))結(jié)果進(jìn)行了統(tǒng)計(jì),現(xiàn)將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是;
(3)若該校七年級(jí)共有960名學(xué)生,請你估算該年級(jí)學(xué)生中對(duì)數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:25,則S△BDE與S△CDE的比是( )
A.1:3
B.1:4
C.1:5
D.1:25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com